Sex differences in acetylcholinesterase modulation during spatial and fear memory extinction in the amygdala; an animal study in the single prolonged stress model of PTSD

Ahmad Mohammadi-Farani , Sajad Farhangian, Samira Shirooie


Background and purpose: Men and women show different reactions to trauma and that is believed to be the reason behind the higher prevalence of post-traumatic stress disorder (PTSD) in women. Cholinergic signaling has long been known to be involved in the processing of fear-related information and the amygdala is a critical center for fear modulation. The main goal of the current research was to find (a) whether trauma results in different learning/extinction of fear or spatial-related information among male and female rats and (b) if trauma is associated with different acetylcholinesterase (AchE) activity in the amygdala.

Experimental approach: We used single prolonged stress (SPS) as a PTSD model in this study. Normal and SPS animals of both sexes were tested in contextual and spatial tasks (learning and extinction). AchE activity in the amygdala was also measured during each process.

Findings / Results: Results indicated that fear and spatial learning were impaired in SPS animals. SPS animals also had deficits in fear and spatial memory extinction and the effect was significantly higher in female-                      SPS than in the male-SPS group. In the enzymatic tests, AchE activity was increased during the fear extinction test and incremental changes were more significant in the female-SPS group.

Conclusion and implications: Collectively, these findings provided evidence that sex differences in                 response to trauma were at least partly related to less fear extinction potential in female subjects. It also indicated that the extinction deficit was associated with reduced cholinergic activity in the amygdala of female animals.




Acetylcholinesterase; Amygdala; Extinction; Post-traumatic stress disorder; Sex differences.

Full Text:



Norrholm SD, Jovanovic T. Fear processing, psychophysiology, and PTSD. Harv Rev Psychiatry. 2018;26(3):129-141. DOI: 10.1097/HRP.0000000000000189.

Johnson LR, McGuire J, Lazarus R, Palmer AA. Pavlovian fear memory circuits and phenotype models of PTSD. Neuropharmacology. 2012;62(2):638-646.DOI: 10.1016/j.neuropharm.2011.07.004.

Mendez-Couz M, Gonzalez-Pardo H, Vallejo G, Arias JL, Conejo NM. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks. Hippocampus. 2016;26(10):1265-1275. DOI: 10.1002/hipo.22602.

Prado VF, Janickova H, Al-Onaizi MA, Prado MAM. Cholinergic circuits in cognitive flexibility. Neuroscience. 2017;345:130-141.DOI: 10.1016/j.neuroscience.2016.09.013.

Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res. 2017;95(3):836-852. DOI: 10.1002/jnr.23840.

Muller JF, Mascagni F, McDonald AJ. Cholinergic innervation of pyramidal cells and parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. J Comp Neurol. 2011;519(4):790-805.DOI: 10.1002/cne.22550.

Mendez-Couz M, Conejo NM, Vallejo G, Arias JL. Spatial memory extinction: a c-Fos protein mapping study. Behav Brain Res. 2014;260:101-110.DOI: 10.1016/j.bbr.2013.11.032.

Maren S, Holmes A. Stress and fear extinction. Neuropsychopharmacology. 2016;41(1):58-79.DOI: 10.1038/npp.2015.180.

Boccia MM, Blake MG, Baratti CM, McGaugh JL. Involvement of the basolateral amygdala in muscarinic cholinergic modulation of extinction memory consolidation. Neurobiol Learn Mem. 2009;91(1):93-97.DOI: 10.1016/j.nlm.2008.07.012.

Bucherelli C, Baldi E, Mariottini C, Passani MB, Blandina P. Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learn Mem. 2006;13(4):426-430.DOI: 10.1101/lm.326906.

Cangioli I, Baldi E, Mannaioni PF, Bucherelli C, Blandina P, Passani MB. Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci. 2002;16(3):521-528.DOI: 10.1046/j.1460-9568.2002.02092.x.

Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S, et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron. 2016;90(5):1057-1070.DOI: 10.1016/j.neuron.2016.04.028.

Passani MB, Cangioli I, Baldi E, Bucherelli C, Mannaioni PF, Blandina P. Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. Eur J Neurosci. 2001;14(9):1522-1532.DOI: 10.1046/j.0953-816x.2001.01780.x.

Sharp BM. Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: pharmacological effects and addiction in animal models and humans. Eur J Neurosci. 2019;50(3):2247-2254.DOI: 10.1111/ejn.13970.

Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res. 2011;221(2):389-411.DOI: 10.1016/j.bbr.2010.11.036.

Jovanovic T, Ressler KJ. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry. 2010;167(6):648-662.DOI: 10.1176/appi.ajp.2009.09071074.

Wardenaar KJ, Lim CCW, Al-Hamzawi AO, Alonso J, Andrade LH, Benjet C, et al. The cross-national epidemiology of specific phobia in the World Mental Health Surveys. Psychol Med. 2017;47(10):1744-1760.DOI: 10.1017/S0033291717000174.

Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, et al. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety. 2009;26(12):1110-1117.DOI: 10.1002/da.20629.

Mohammadi-Farani A, Taghadosi M, Raziee S, Samimi Z. In vivo blockade of 5HT3 receptors in the infralimbic medial prefrontal cortex enhances fear extinction in a rat model of PTSD. Iran J Basic Med Sci. 2021;24(6):776-786.DOI: 10.22038/ijbms.2021.54299.12197.

Wu Z-M, Yang L-H, Cui R, Ni G-L, Wu F-T, Liang Y. Contribution of hippocampal 5-HT 3 receptors in hippocampal autophagy and extinction of conditioned fear responses after a single prolonged stress exposure in rats. Cell Mol Neurobiol. 2017;37(4):595-606.DOI: 10.1007/s10571-016-0395-7.

Mohammadi-Farani A, Haghighi A, Ghazvineh M. Effects of long term administration of testosterone and estradiol on spatial memory in rats. Res Pharm Sci. 2015;10(5):407-418. PMID: 26752989.

Rossato JI, Bevilaqua LRM, Medina JH, Izquierdo I, Cammarota M. Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learn Mem. 2006;13(4):431-440.DOI: 10.1101/lm.315206.

Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88-95.DOI: 10.1016/0006-2952(61)90145-9.

Jia M, Meng F, Smerin SE, Xing G, Zhang L, Su DM, et al. Biomarkers in an animal model for revealing neural, hematologic, and behavioral correlates of PTSD. J Vis Exp. 2012;(68):e3361,1-10.DOI: 10.3791/3361.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. DOI: 10.1006/abio.1976.9999.

Ressler RL, Maren S. Synaptic encoding of fear memories in the amygdala. Curr Opin Neurobiol. 2019;54:54-59.DOI: 10.1016/j.conb.2018.08.012.

Unal CT, Pare D, Zaborszky L. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons. J Neurosci. 2015;35(2):853-863.DOI: 10.1523/JNEUROSCI.2706-14.2015.

Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev. 2019;103:81-108.DOI: 10.1016/j.neubiorev.2019.05.020.

Harada K, Yamaji T, Matsuoka N. Activation of the serotonin 5-HT2C receptor is involved in the enhanced anxiety in rats after single-prolonged stress. Pharmacol Biochem Behav. 2008;89(1):11-16.DOI: 10.1016/j.pbb.2007.10.016.

Miao Y-L, Guo W-Z, Shi W-Z, Fang W-W, Liu Y, Liu J, et al. Midazolam ameliorates the behavior deficits of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS One. 2014;9(7):e101450,1-8.DOI: 10.1371/journal.pone.0101450.

Liu F, Yang L-D, Sun X-R, Zhang H, Pan W, Wang X-M, et al. NOX2 mediated-parvalbumin interneuron loss might contribute to anxiety-like and enhanced fear learning behavior in a rat model of post-traumatic stress disorder. Mol Neurobiol. 2016;53(10):6680-6689.DOI: 10.1007/s12035-015-9571-x.

Poulos AM, Zhuravka I, Long V, Gannam C, Fanselow M. Sensitization of fear learning to mild unconditional stimuli in male and female rats. Behav Neurosci. 2015;129(1):62-67.DOI: 10.1037/bne0000033.

Maren S, De Oca B, Fanselow MS. Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res. 1994;661(1-2):25-34.DOI: 10.1016/0006-8993(94)91176-2.

Santini E, Sepulveda-Orengo M, Porter JT. Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. N P P. 2012;37(9):2047-2056.DOI: 10.1038/npp.2012.52.

Schroeder JP, Packard MG. Facilitation of memory for extinction of drug-induced conditioned reward: role of amygdala and acetylcholine. Learn Mem. 2004;11(5):641-647.DOI: 10.1101/lm.78504.

Mohammadi-Farani A, Limoee M, Shirooie S. Sodium butyrate enhances fear extinction and rescues hippocampal acetylcholinesterase activity in a rat model of posttraumatic stress disorder. Behav Pharmacol. 2021;32(5):413-421.DOI: 10.1097/FBP.0000000000000633.

Sailaja BS, Cohen-Carmon D, Zimmerman G, Soreq H, Meshorer E. Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci U S A. 2012;109(52):E3687-E3695.

DOI: 10.1073/pnas.1209990110.

Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 2013;218(1):59-72.DOI: 10.1007/s00429-011-0376-z.

Woolf NJ, Eckenstein F, Butcher LL. Cholinergic systems in the rat brain: I. projections to the limbic telencephalon. Brain Res Bull. 1984;13(6):751-784.DOI: 10.1016/0361-9230(84)90236-3.

Blokland A, Rutten K, Prickaerts J. Analysis of spatial orientation strategies of male and female Wistar rats in a Morris water escape task. Behav Brain Res. 2006;171(2):216-224.DOI: 10.1016/j.bbr.2006.03.033.

Mohammadi-Farani A, Pourmotabbed A, Ardeshirizadeh Y. Effects of HDAC inhibitors on spatial memory and memory extinction in SPS-induced PTSD rats. Res Pharm Sci. 2020;15(3):241-248.DOI: 10.4103/1735-5362.288426.

Sneider JT, Hamilton DA, Cohen-Gilbert JE, Crowley DJ, Rosso IM, Silveri MM. Sex differences in spatial navigation and perception in human adolescents and emerging adults. Behav Processes. 2015;111:42-50.DOI: 10.1016/j.beproc.2014.11.015.

Jonasson Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev. 2005;28(8):811-825.DOI: 10.1016/j.neubiorev.2004.10.006.

Jeffery KJ. The Hippocampus: from memory, to map, to memory map. Trends Neurosci. 2018;41(2):64-66.DOI: 10.1016/j.tins.2017.12.004.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.