Aflatoxin G1 exposure altered the expression of BDNF and GFAP, histopathological of brain tissue, and oxidative stress factors in male rats

Toraj Zamir-Nasta , Ardeshir Abbasi, Seyran Kakebaraie, Arash Ahmadi, Mona Pazhouhi, Cyrus Jalili

Abstract


Background and purpose: Aflatoxins are highly toxic compounds that can cause acute and chronic toxicity in humans and animals. This study aimed to evaluate the expression of BDNF and GFAP, histopathological changes, and oxidative stress factors in brain tissue exposed to aflatoxin G1 (AFG1) in male rats.

Experimental approach: Twenty-eight male Wistar rats were used. Animals were randomly divided into 4 groups of 7 each. The control group received 0.2 mL of corn oil and the treatment groups were exposed to AFG1 (2 mg/kg) intra-peritoneally for 15, 28, and 45 days. The tissue was used for histopathological studies, and the level of TAC, SOD, and MDA, and the expression of BDNF and GFAP genes were evaluated.

Findings/Results: Real-time PCR results showed that AFG1 increased GFAP expression and decreased BDNF expression in AFG1-treated groups compared to the control group. The tissue level of TAC and SOD over time in the groups receiving AFG1 significantly decreased and the tissue level of MDA increased compared to the control group. Histopathological results showed that AFG1 can cause cell necrosis, a reduction of the normal cells number in the hippocampal region of CA1, cerebral edema, shrinkage of nerve cells, formation of space around neuroglia, and diffusion of gliosis in the cerebral cortex after 45 days.

Conclusion and implication: AFG1, by causing pathological complications in cortical tissue, was able to affect the exacerbation of nerve tissue damage and thus pave the way for future neurological diseases.

 

 


Keywords


Aflatoxin G1; BDNF; Brain tissue; GFAP.

Full Text:

PDF

References


Dhanasekaran D, Shanmugapriya S, Thajuddin N, Panneerselvam A. Aflatoxins and Aflatoxicosis in Human and Animals. In: Guevara-Gonzalez RG, editor. Aflatoxins - Biochemistry and Molecular Biology. IntechOpen; 2011. pp. 221-254. DOI: 10.5772/22717.

Shen H, Lv P, Xing X, Xing L, Yan X, Wang J, et al. Impairment of alveolar type-II cells involved in the toxicity of aflatoxin G1 in rat lung. Food Chem Toxicol. 2012;50(9):3222-3228.DOI: 10.1016/j.fct.2012.06.008.

Khan MR, Alothman ZA, Ghfar AA, Wabaidur SM. Analysis of aflatoxins in nonalcoholic beer using liquid-liquid extraction and ultraperformance LC‐MS/MS. J Sep Sci. 2013;36(3):572-577. DOI: 10.1002/jssc.201200752.

Zhang X, Wang F, Wang J, Yan X, Huang X, Xie T, et al. Experimental lung carcinoma induced by fungi and mycotoxins--a review. Beijing Da Xue Xue Bao Yi Xue Ban. 2003;35(1):4-6.PMID: 12920799.

Zhang Z, Yang X, Wang Y, Wang X, Lu H, Zhang X, et al. Cytochrome P450 2A13 is an efficient enzyme in the metabolic activation of aflatoxin G1 in human bronchial epithelial cells. Arch Toxicol. 2013;87(9):1697-1707. DOI: 10.1007/s00204-013-1108-3.

Makhlouf MMM. Histological and ultrastructural study of aflatoxinB1 induced neurotoxicity in sciatic nerve of adult male Albino rats. Ultrastruct Pathol. 2020;44(1):52-60.DOI: 10.1080/01913123.2019.1709933.

Tanaka T, Mizukami S, Hasegawa-Baba Y, Onda N, Sugita-Konishi Y, Yoshida T, et al. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats. Toxicology. 2015;336:59-69. DOI: 10.1016/j.tox.2015.08.001.

Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. Ecotoxicol Environ Saf. 2019;182:109407,1-9.DOI: 10.1016/j.ecoenv.2019.109407.

Bahey NG, Abd Elaziz HO, Gadalla KKES. Toxic effect of aflatoxin B1 and the role of recovery on the rat cerebral cortex and hippocampus. Tissue Cell. 2015;47(6):559-566.DOI; 10.1016/j.tice.2015.09.001.

Dohnal V, Wu Q, Kuča K. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol. 2014;88(9):1635-1644.DOI: 10.1007/s00204-014-1312-9.

Qureshi H, Hamid SS, Ali SS, Anwar J, Siddiqui AA, Khan NA. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med Mycol. 2015;53(4):409-416. DOI: 10.1093/mmy/myv010.

Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. 2004;25(2):77-107. DOI: 10.1016/j.yfrne.2004.04.001.

Ogłodek EA, Just MJ, Szromek AR, Araszkiewicz A. Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep. 2016;68(5):945-951. DOI: 10.1016/j.pharep.2016.04.003.

Radiske A, Rossato JI, Köhler CA, Gonzalez MC, Medina JH, Cammarota M. Requirement for BDNF in the reconsolidation of fear extinction. J Neurosci. 2015;35(16):6570-6574. DOI: 10.1523/JNEUROSCI.4093-14.2015.

Vafaei AA, Jezek K, Bures J, Fenton AA, Rashidy-Pour A. Post-training reversible inactivation of the rat’s basolateral amygdala interferes with hippocampus-dependent place avoidance memory in a time-dependent manner. Neurobiol Learn Mem. 2007;88(1):87-93.DOI: 10.1016/j.nlm.2007.02.004.

Moeton M, Stassen OM, Sluijs JA, van der Meer VW, Kluivers LJ, van Hoorn H, et al. GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cell Mol Life Sci. 2016;73(21):4101-4120. DOI: 10.1007/s00018-016-2239-5.

Batarseh YS, Mohamed LA, Al Rihani SB, Mousa YM, Siddique AB, El Sayed KA, et al. Oleocanthal ameliorates amyloid-β oligomers’ toxicity on astrocytes and neuronal cells: in vitro studies. Neuroscience. 2017;352:204-215. DOI .10.1016/j.neuroscience.2017.03.059.

Barreto RA, Sousa CS, Silva VDA, Silva AR, Veloso ES, Cunha SD, et al. Monocrotaline pyrrol is cytotoxic and alters the patterns of GFAP expression on astrocyte primary cultures. Toxicol In Vitro. 2008;22(5):1191-1197. DOI: 10.1016/j.tiv.2008.03.013.

Zamir-Nasta T, Pazhouhi M, Ghanbari A, Abdolmaleki A, Jalili C. Expression of cyclin D1, p21, and estrogen receptor alpha in aflatoxin G1-induced disturbance in testicular tissue of albino mice. Res Pharm Sci. 2021;16(2):182-192. DOI: 10.4103/1735-5362.310525.

Deng ZJ, Zhao JF, Huang F, Sun GL, Wei G, Li L, et al. Protective effect of procyanidin B2 on acute liver injury induced by aflatoxin B1 in rats. Biomed Environ Sci. 2020;33(4):238-247. DOI: 0.3967/bes2020.033.

Ashraf B, Ghazy D, Shamel M. Effects of aflatoxin B1 on the submandibular salivary gland of albino rats and possible therapeutic potential of Rosmarinus officinalis: a light and electron microscopic study. F1000Res. 2020;9:752.DOI: 10.12688/f1000research.25196.1.

Jalili C, Salahshoor MR, Pourmotabbed A, Moradi S, Roshankhah SH, Darehdori AS, et al. The effects of aqueous extract of Boswellia serrata on hippocampal region CA1 and learning deficit in kindled rats. Res Pharm Sci. 2014;9(5):351-358. PMID: 25657807.

Stephenson J, Nutma E, P der Valk, S Amor, Inflammation in CNS neurodegenerative diseases. Immunology. 2018;154(2):204-219.DOI: 10.1111/imm.12922.

Trebak F, Alaoui A, Alexandre D, El Ouezzani S, Anouar Y, Chartrel N, et al. Impact of aflatoxin B1 on hypothalamic neuropeptides regulating feeding behavior. Neurotoxicology. 2015;49:165-173.DOI: 10.1016/j.neuro.2015.06.008.

Amici M, Cecarini V, Pettinari A, Bonfili L, Angeletti M, Barocci S, et al. Binding of aflatoxins to the 20S proteasome: effects on enzyme functionality and implications for oxidative stress and apoptosis. Biol Chem. 2007;388(1):107-117. DOI: 10.1515/BC.2007.012.

Benkerroum N. Chronic and acute toxicities of aflatoxins: mechanisms of action. Int J Environ Res Public Health. 2020;17(2):423,1-28. DOI: 10.3390/ijerph17020423.

Al-Rubaei ZMM, Mohammad TU, Ali LK. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak J Biol Sci. 2014;17(12):1237-1241.DOI: 10.3923/pjbs.2014.1237.1241.

Souto NS, Braga ACM, de Freitas ML, Fighera RM, Royes LFF, Oliveira MS, et al. Aflatoxin B1 reduces non-enzymatic antioxidant defenses and increases protein kinase C activation in the cerebral cortex of young rats. Nutr Neurosci. 2018;21(4):268-275. DOI: 10.1080/1028415X.2017.1278837.

Gugliandolo E, Peritore AF, D’Amico R, Licata P, Crupi R. Evaluation of neuroprotective effects of quercetin against aflatoxin B1-intoxicated mice. Animals (Basel). 2020;10(5):898,1-13. DOI: 10.3390/ani10050898.

Karabacak M, Eraslan G, Kanbur M, Sarıca ZS. Effects of Tarantula cubensis D6 on aflatoxin-induced injury in biochemical parameters in rats. Homeopathy. 2015;104(3):205-210. DOI: 10.1016/j.homp.2015.02.005.

Boccoli J, Loidl CF, Lopez-Costa JJ, Creydt VP, Ibarra C, Goldstein J. Intracerebroventricular Ibarra C, Goldstein J. Intracerebroventricular administration of Shiga toxin type 2 altered the expression levels of neuronal nitric oxide synthase and glial fibrillary acidic protein in rat brains. Brain Res. 2008;1230:320-333. DOI: 10.1016/j.brainres.2008.07.052.

Vazi E, Holanda F, Santos N, Cardoso C, Martins M, Bondan E. Short-term systemic methotrexate administration in rats induces astrogliosis and microgliosis. Res Vet Sci. 2021;138:39-48. DOI: 10.1016/j.rvsc.2021.05.020.

Freyssin A, Fauconneau B, Chassaing D, Rioux Bilan A, Page G. Chronic intraperitoneal injection of polyethylene glycol 200 in mice induces hippocampal neuroinflammation. Drug Chem Toxicol. 2022;45(5):1995-2002. DOI: 10.1080/01480545.2021.1894738.

Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol. 2017;27(5):645-674. DOI: 10.1111/bpa.12538.

Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364-374. DOI: 10.1016/j.tins.2015.04.003.

Park S, Lee JY, You S, Song G, Lim W. Neurotoxic effects of aflatoxin B1 on human astrocytes in vitro and on glial cell development in zebrafish in vivo. J Hazard Mater. 2020;386:121639,1-40. DOI: 10.1016/j.jhazmat.2019.121639.

Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front Neurosci. 2018;12:52,1-6. DOI: 10.3389/fnins.2018.00052.

Siang Ng TK, Hui Ho CS, Tam WWS, Kua EH, Ho RCM. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20(2):257,1-26. DOI: 10.3390/ijms20020257.

Wei C, Sun Y, Chen N, Chen S, Xiu M, Zhang X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology. 2020;111:104473,1-7. DOI: 10.1016/j.psyneuen.2019.104473.

Mehrzad J, Hosseinkhani S, Malvandi AM. Human microglial cells undergo proapoptotic induction and inflammatory activation upon in vitro exposure to a naturally occurring level of aflatoxin B1. Neuroimmunomodulation. 2018;25(3):176-183. DOI: 10.1159/000493528.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.