Identification of new small molecules as dual FoxM1 and Hsp70 inhibitors using computational methods

Zahra Alimardan , Maryam Abbasi , Ghadamali Khodarahmi , Khosrow Kashfi, Farshid Hasanzadeh, Mahmud Aghaei


Background and purpose: FoxM1 and Hsp70 proteins are highly expressed in many cancers. Thus, their inhibition serves as Bonafede targets in cancer treatment.

Experimental approach: FDI-6, an inhibitor of FoxM1, was selected as a template, and based on its structure, a new library from the ZINC database was obtained. Virtual screening was then performed using the created pharmacophore model. The second virtual screening phase was conducted with molecular docking to get the best inhibitor for both FoxM1 and Hsp70 active sites. In silico, ADMET properties were also calculated. Finally, molecular dynamics simulation was performed on the best ligand, ZINC1152745, for both Hsp70 and FoxM1 proteins during 100 ns.

Findings / Results: The results of this study indicated that ZINC1152745 was stable in the active site of both proteins, Hsp70 and FoxM1. The final scaffold identified by the presented computational approach could offer a hit compound for designing promising anticancer agents targeting both FoxM1 and Hsp70.

Conclusion and implications: Molecular dynamics simulations were performed on ZINC1152745 targeting FoxM1 and Hsp70 active sites. The results of several hydrogen bonds, the radius of gyration, RMSF, RMSD, and free energy during the simulations showed good stability of ZINC1152745 with FoxM1 and Hsp70.




Cancer; Dual inhibitor; FoxM1 and Hsp70 inhibitors; Molecular dynamics simulation; Pharmacophore modeling; Virtual screening.

Full Text:



Yu A, Li P, Tang T, Wang J, Chen Y, Liu L. Roles of Hsp70s in stress responses of microorganisms, plants, and animals. Biomed Res Int. 2015;2015:510319. DOI: 10.1155/2015/510319.

Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene. 2003;22(56):9041-9047. DOI: 10.1038/sj.onc.1207114.

Basu N, Todgham AE, Ackerman PA, Bibeau MR, Nakano K, Schulte PM, et al. Heat shock protein genes and their functional significance in fish. Gene. 2002;295(2):173-183. DOI: 10.1016/s0378-1119(02)00687-x.

Evans CG, Chang L, Gestwicki JE. Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem. 2010;53(12):4585-4602. DOI: 10.1021/jm100054f.

Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, et al. Co-chaperones in targeting and delivery of misfolded proteins to the 26S proteasome. Biomolecules. 2020;10(8):1141. DOI: 10.3390/biom10081141.

Halasi M, Váraljai R, Benevolenskaya E, Gartel AL. A Novel function of molecular chaperone HSP70: suppression of oncogenic FoxM1 after proteotoxic stress. J Biol Chem. 2016;291(1):142-148. DOI: 10.1074/jbc.M115.678227.

Li X, Colvin T, Rauch JN, Acosta-Alvear D, Kampmann M, Dunyak B, et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. 2015;14(3):642-8. DOI: 10.1158/1535-7163.Mct-14-0650.

Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, et al. Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 2014;74(17):4731-4740. DOI: 10.1158/0008-5472.Can-14-0747.

Sherman MY, Gabai VL. Hsp70 in cancer: back to the future. Oncogene. 2015;34(32):4153-4161. DOI: 10.1038/onc.2014.349.

Halasi M, Gartel AL. FOX(M1) news--it is cancer. Mol Cancer Ther. 2013;12(3):245-254. DOI: 10.1158/1535-7163.Mct-12-0712.

Littler DR, Alvarez-Fernández M, Stein A, Hibbert RG, Heidebrecht T, Aloy P, et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010;38(13):4527-4538. DOI: 10.1093/nar/gkq194.

Xiang Q, Tan G, Jiang X, Wu K, Tan W, Tan Y. Suppression of FoxM1 transcriptional activities via a single-stranded DNA aptamer generated by SELEX. Sci Rep. 2017;7(1):45377,1-12. DOI: 10.1038/srep45377.

Balaburski GM, Leu JI, Beeharry N, Hayik S, Andrake MD, Zhang G, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11(3):219-229. DOI: 10.1158/1541-7786.MCR-12-0547-T.

Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160522. DOI: 10.1098/rstb.2016.0522.

Moses MA, Zuehlke AD, Neckers L. Molecular Chaperone Inhibitors. In: Binder RJ, Srivastava PK, editors. Heat Shock Proteins in the Immune System. Cham: Springer International Publishing; 2018. pp. 21-40.

Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, et al. Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem. 2009;52(6):1510-1513. DOI: 10.1021/jm801627a.

Terrab L, Wipf P. Hsp70 and the unfolded protein response as a challenging drug target and an inspiration for probe molecule development. ACS Med Chem Lett. 2020;11(3):232-236. DOI: 10.1021/acsmedchemlett.9b00583.

Wisén S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, et al. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS Chem Biol. 2010;5(6):611-622. DOI: 10.1021/cb1000422.

Tabatabaei-Dakhili SA, Aguayo-Ortiz R, Domínguez L, Velázquez-Martínez CA. Untying the knot of transcription factor druggability: molecular modeling study of FoxM1 inhibitors. J Mol Graph Model. 2018;80:197-210. DOI: 10.1016/j.jmgm.2018.01.009.

Halasi M, Hitchinson B, Shah BN, Váraljai R, Khan I, Benevolenskaya EV, et al. Honokiol is a FoxM1 antagonist. Cell Death Dis. 2018;9(2):84. DOI: 10.1038/s41419-017-0156-7.

Gormally MV, Dexheimer TS, Marsico G, Sanders DA, Lowe C, Matak-Vinković D, et al. Suppression of the FoxM1 transcriptional programme via novel small molecule inhibition. Nat Commun. 2014;5:5165. DOI: 10.1038/ncomms6165.

Shukla S, Milewski D, Pradhan A, Rama N, Rice K, Le T, et al. The FoxM1 inhibitor RCM-1 decreases carcinogenesis and nuclear β-catenin. Mol Cancer Ther. 2019;18(7):1217-1229. DOI: 10.1158/1535-7163.Mct-18-0709.

Tabatabaei Dakhili SA, Pérez DJ, Gopal K, Haque M, Ussher JR, Kashfi K, et al. SP1-independent inhibition of FoxM1 by modified thiazolidinediones. Eur J Med Chem. 2021;209:112902. DOI: 10.1016/j.ejmech.2020.112902.

Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer. 2019;18(1):5. DOI: 10.1186/s12943-019-0938-x.

Katara P. Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinform. 2013;2(4):225-230. DOI: 10.1007/s13721-013-0039-5.

Mohebi M, Fayazi N, Esmaeili S, Rostami M, Bagheri F, Aliabadi A, et al. Synthesis, characterization, molecular docking, antimalarial, and antiproliferative activities of benzyloxy-4-oxopyridin benzoate derivatives. Res Pharm Sci. 2022;17(3):252-264.DOI: 10.4103/1735-5362.343079.

Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16(8):531-543. DOI: 10.1038/nrd.2017.111.

Kumar A, Roy S, Tripathi S, Sharma A. Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J Biomol Struct Dyn. 2016;34(2):239-249. DOI: 10.1080/07391102.2015.1022603.

Masoomi Sefiddashti F, Asadpour S, Haddadi H, Ghanavati Nasab S. QSAR analysis of pyrimidine derivatives as VEGFR-2 receptor inhibitors to inhibit cancer using multiple linear regression and artificial neural network. Res Pharm Sci. 2021;16(6):596-611.DOI: 10.4103/1735-5362.327506.

Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20(23):2839-2860. DOI: 10.2174/09298673113209990001.

Emami L, Sabet R, Khabnadideh S, Faghih Z, Thayori P. Quinazoline analogues as cytotoxic agents; QSAR, docking, and in silico studies. Res Pharm Sci. 2021;16(5):528-546.DOI: 10.4103/1735-5362.323919.

Sunseri J, Koes DR. Pharmit: interactive exploration of chemical space. Nucleic Acids Res. 2016;44:W442-W448. DOI: 10.1093/nar/gkw287.

Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr., Brice MD, Rodgers JR, et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112(3):535-542. DOI: 10.1016/s0022-2836(77)80200-3.

Accelrys Software Inc. 2014. Available from: ucts/collaborative-science/biovia-discovery-studio/

Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual screening with AutoDock: theory and practice. Expert Opin Drug Discov. 2010;5(6):597-607. DOI: 10.1517/17460441.2010.484460.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. DOI: 10.1002/jcc.21256.

Schlecht R, Scholz SR, Dahmen H, Wegener A, Sirrenberg C, Musil D, et al. Functional analysis of Hsp70 inhibitors. PLoS One. 2013;8(11):e78443. DOI: 10.1371/journal.pone.0078443.

Hodgson J. ADMET--turning chemicals into drugs. Nat Biotechnol. 2001;19(8):722-726. DOI: 10.1038/90761.

Razzaghi-Asl N, Mirzayi S, Mahnam K, Adhami V, Sepehri S. In silico screening and molecular dynamics simulations toward new human papillomavirus 16 type inhibitors. Res Pharm Sci. 2022;17(2):189-208.DOI: 10.4103/1735-5362.335177.

Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res. 1997;14(5):568-571. DOI: 10.1023/a:1012188625088.

Schaftenaar G, de Vlieg J. Quantum mechanical polar surface area. J Comput Aided Mol Des. 2012;26(3):311-318. DOI: 10.1007/s10822-012-9557-y.

Luco JM. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci. 1999;39(2):396-404. DOI: 10.1021/ci980411n.

Reichel A, Begley DJ. Potential of immobilized artificial membranes for predicting drug penetration across the blood-brain barrier. Pharm Res. 1998;15(8):1270-1274. DOI: 10.1023/a:1011904311149.

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. DOI: 10.1016/j.softx.2015.06.001.

Sousa da Silva AW, Vranken WF. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5(1):367. DOI: 10.1186/1756-0500-5-367.

Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput. 2011;7(7):2284-2295. DOI: 10.1021/ct200133y.

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995,117,5179-5197. DOI: 10.1021/ja955032e. 10.1021/ja00124a002

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926-935. DOI: 10.1063/1.445869.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33-38. DOI: 10.1016/0263-7855(96)00018-5.

Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. An efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314-3321. DOI: 10.1021/ct300418h.

Kumari R, Kumar R, Lynn A. g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951-1962. DOI: 10.1021/ci500020m.

Tabatabaei Dakhili SA, Pérez DJ, Gopal K, Tabatabaei Dakhili SY, Ussher JR, Velázquez-Martínez CA. A structure-activity relationship study of Forkhead Domain Inhibitors (FDI): the importance of halogen binding interactions. Bioorg Chem. 2019;93:103269. DOI: 10.1016/j.bioorg.2019.103269.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.