Caveolae-dependent endocytosis mediates the cellular uptake of CdTe quantum dots in ovarian cancer cell lines

Zahra Asadian , Hakimeh Zare, Mahmoud Aghaei, Mojtaba Panjehpour

Abstract


Background and purpose: Quantum dots (QDs) are semiconductor nanocrystals that are widely used in biology due to their good optical properties. QDs, especially cadmium-based QDs, play an important role in the diagnosis and treatment of cancer due to their intrinsic fluorescence. . The aim of the present study was the evaluation of the cellular uptake mechanisms of CdTe QDs in ovarian cancer cell lines. Experimental approach: In this study, we used CdTe QDs coated with thioglycolic acid. The ovarian cancer cell lines SKOV3 and OVCAR3 were treated with different concentrations of QDs, triamterene, chlorpromazine, and nystatin, and cell viability was evaluated through the MTT test. To find the way of cellular uptake of CdTe QDs, we used the MTT test and interfering compounds in endocytic pathways. Intrinsic fluorescence and cellular internalization of CdTe QDs were assessed using flow cytometry and fluorescence microscopy imaging. Findings / Results: The viability of CdTe QDs-treated cells dose-dependently decreased in comparison to untreated cells. To evaluate the cellular uptake pathways of CdTe QDs, in most cases, a significant difference was observed when the cells were pretreated with nystatin. The results of flow cytometry showed the cellular uptake of CdTe QDs was dose- and time-dependent. Conclusion and implications: Nystatin had a measurable effect on the cellular uptake of CdTe QDs. This finding suggests that caveola-mediated endocytosis has a large portion on the internalization of CdTe QDs. According to the results of this study, CdTe QDs may have potential applications in cancer research and diagnosis.

Keywords


CdTe QDs; Cellular uptake; Endocytosis; Ovarian cancer.

Full Text:

PDF

References


Tarafdar J, Sharma S, Raliya R. Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol. 2013;12(3):219-226. DOI: 10.5897/AJB12.2481.

de Almeida MS, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50(9):5397-5434. DOI: 10.1039/D0CS01127D.

Yhee JY, Son S, Kim N, Choi K, Kwon IC. Theranostic applications of organic nanoparticles for cancer treatment. Mrs Bull. 2014;39(3):239-249. DOI: 10.1557/mrs.2014.30.

Singh AK. Introduction to nanoparticles and nanotoxicology. In: engineered nanoparticles: structure, properties and mechanisms of toxicity. 1st ed. Boston: Academic Press; 2016: 1-18. DOI: 10.1016/B978-0-12-801406-6.

Papagiannaros A, Levchenko T, Hartner W, Mongayt D, Torchilin V. Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region. Nanomedicine. 2009;5(2):216-224. DOI: 10.1016/j.nano.2008.10.001.

Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr opin biotechnol. 2002;13(1):40-46. DOI: 10.1016/s0958-1669(02)00282-3.

Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. sci. 1996;271:5251,933-937. DOI: 10.1126/science.271.5251.933.

Shukla S. Recent developments in biomedical applications of quantum dots. Adv Mater Rev. 2014;1(1):2-12. DOI: 10.5185/amr.2014.1002.

Tang S, Cai Q, Chibli H, Allagadda V, Nadeau JL, Mayer GD. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells. Toxicol Appl Pharmacol. 2013;272(2):443-452. DOI: 10.1016/j.taap.2013.06.004.

Berns EMJJ, Bowtell DD. The changing view of high-grade serous ovarian cancer. Cancer Res. 2012;72(11):2701-2704. DOI: 10.1158/0008-5472.CAN-11-3911.

Morice P, Leblanc E, Rey A, Baron M, Querleu D, Blanchot J, et al. Conservative treatment in epithelial ovarian cancer: results of a multicentre study of the GCCLCC (groupe des chirurgiens de centre de lutte contre le cancer) and SFOG (societe francaise d'oncologie gynecologique). Hum Reprod. 2005;20(5):1379-1385. DOI: 10.1093/humrep/deh777.

Wang H-Z, Wang H-Y, Liang R-Q, Ruan K-C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin. 2004;36(10):681-686. DOI: 10.1093/abbs/36.10.681.

Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218-4244. DOI: 10.1039/C6CS00636A.

Brown CM, Petersen NO. Free clathrin triskelions are required for the stability of clathrin-associated adaptor protein (AP-2) coated pit nucleation sites. Biochem Cell Biol. 1999;77(5):439-448. PMID: 10593607.

Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta. 1999;1450(3):177-190. DOI: 10.1016/s0167-4889(99)00070-1.

Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89(8):836-843. DOI: 10.1038/icb.2011.20.

Bloomfield G, Kay RR. Uses and abuses of macropinocytosis. J Cell Sci. 2016;129(14):2697-2705. DOI: 10.1242/jcs.176149.

Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009;10(4):364-371. DOI: 10.1111/j.1600-0854.2009.00878.x.

Groneberg DA, Giersig M, Welte T, Pison U. Nanoparticle-based diagnosis and therapy. Curr Drug Targets. 2006;7(6):643-648. DOI: 10.2174/138945006777435245.

Zare H, Marandi M, Fardindoost S, Sharma VK, Yeltik A, Akhavan O, et al. High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res. 2015;8(7):2317-2328. DOI: 10.1007/s12274-015-0742-x.

Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, et al. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 2007;7(11):3452-3461. DOI: 10.1021/nI0719832.

Buono C, Anzinger JJ, Amar M, Kruth HS. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest. 2009;119(5):1373-1381. DOI: 10.1172/JCI35548.

Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;110(1):138-155. DOI: 10.1093/toxsci/kfp087.

Su Y, Hu M, Fan C, He Y, Li Q, Li W, et al. The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties. Biomaterials. 2010;31(18):4829-4834. DOI: 10.1016/j.biomaterials.2010.02.074.

Chakraborty S, Gogoi M, Kalita E, Deb P. Multifunctional, high luminescent, biocompatible CdTe quantum dot fluorophores for bioimaging applications. Int J Nanosci. 2011;10:04n05,1191-1195. DOI: 10.1142/S0219581X11008459.

Naderi S, Zare H, Taghavinia N, Irajizad A, Aghaei M, Panjehpour M. Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines. Toxicol Ind Health. 2018;34(5):339-352. DOI: 10.1177/0748233718763517.

Engelberg S, Modrejewski J, Walter JG, Livney YD, Assaraf YG. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles. Oncotarget. 2018;9(30):20993-21006. DOI: 10.18632/oncotarget.24772.

Foroozandeh P, Aziz AA, Mahmoudi M. Effect of cell age on uptake and toxicity of nanoparticles: the overlooked factor at the nanobio interface. ACS Appl Mater Interfaces. 2019;11(43):39672-39687. DO: 10.1021/acsami.9b15533.

Breus VV, Pietuch A, Tarantola M, Basché T, Janshoff A. The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots. Beilstein J Nanotechnol. 2015;6:281-292. DOI: 10.3762/bjnano.6.26.

Yan M, Zhang Y, Qin H, Liu K, Guo M, Ge Y, et al. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomedicine. 2016;11:529-542. DOI: 10.2147/IJN.S93591.

McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater. 2018;30(18):e1706356,1-18. DOI: 10.1002/adma.201706356.

Han S-J, Rathinaraj P, Park S-Y, Kim YK, Lee JH, Kang I-K, et al. Specific intracellular uptake of herceptin-conjugated CdSe/ZnS quantum dots into breast cancer cells. Biomed Res Int. 2014;2014:954307,1-9. DOI: 10.1155/2014/954307.

Vibin M, Vinayakan R, John A, Fernandez FB, Abraham A. Effective cellular internalization of silica-coated CdSe quantum dots for high contrast cancer imaging and labeling applications. Cancer Nanotechnol. 2014;5:1,1-12.

Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana SC, Hoffmann B, et al. Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm. 2014;466(1-2):382-389. DOI: 10.1016/j.ijpharm.2014.03.037.

Tang T, Wei Y, Yang Q, Yang Y, Sailor MJ, Pang H-B. Rapid chelator-free radiolabeling of quantum dots for in vivo imaging. Nanoscale. 2019;11(46):22248-22254. DOI: 10.1039/C9NR08508D.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.