Design and synthesis of some novel triazine-tyrosine hybrids as potential agents for the treatment of multiple sclerosis

Sajjad Saeidi , Parvin Asadi, Farshid Hassanzadeh, Mehdi Aliomrani, Ghadam Ali Khodarahmi

Abstract


Background and purpose: One of the most noteworthy methods to slow down multiple sclerosis (MS) progress is a decrease of lymphocyte cells via S1P1 receptor modulating. Here, a series of S1P1 receptor modulators were designed and investigated for their ability to decrease lymphocytes in a rat model. Experimental approach: Molecular docking was performed to compare the binding mode of desired compounds 5a-f with fingolimod to the active site of the S1P1 receptor, theoretically. To prepare desired compounds, 5a-f, cyanuric chloride was reacted with different amines, a-f, which then converted to 4a-f compounds through reaction with N-boc-Tyr-OMe ester. Finally, deprotection of the carboxyl and amino groups was carried out to obtain 5a-f as final products. Lymphocyte counting in the rat model was carried out using flow cytometry to evaluate the efficacy of the suggested compounds. Findings / Results: All compounds exhibited lower binding energy than fingolimod. Compound 5e with ΔG = -8.10 kcal/mol was the best compound. The structure of the compounds was confirmed spectroscopically. The in vivo study proved that compounds 5b and 5a decreased the lymphocytes level at 0.3 and 3 mg/kg, respectively. Conclusion and implications: The desired compounds were well fitted in the receptor active site following molecular docking studies. The results of lymphocyte count revealed that compounds 5a and 5b with propyl and ethyl substitutes showed the maximum activity in vivo. Finally, the results of the present project can be used for forthcoming investigations towards the design and synthesis of novel potential agents for MS treatment.

Keywords


Lymphocyte counts; Molecular docking; Multiple sclerosis; S1P1R modulator.

Full Text:

PDF

References


Banisharif-Dehkordi F, Mobini-Dehkordi M, Shakhsi-Niaei M, Mahnam K. Design and molecular dynamic simulation of a new double-epitope tolerogenic protein as a potential vaccine for multiple sclerosis disease. Res Pharm Sci. 2019;14(1):20-26. DOI: 10.4103/1735-5362.251849.

Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J. Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis. Res Pharm Sci. 2020;15(6):602-611. DOI: 10.4103/1735-5362.301345.

Yahyazadeh S, Esmaeil N, Shaygannejad V, Mirmosayyeb O. Comparison of follicular T helper cells, monocytes, and T cells priming between newly diagnosed and rituximab-treated MS patients and healthy controls. Res Pharm Sci. 2022;17(3):315-323. DOI: 10.4103/1735-5362.343085.

Weinshenker BG. Epidemiology of multiple sclerosis. Neurol Clin. 1996;14(2):291-308.

Doi: 10.1016/SO733-8619(05)70257-7.

Bordet R, Camu W, De Seze J, Laplaud D-A, Ouallet J-C, Thouvenot E. Mechanism of action of s1p receptor modulators in multiple sclerosis: the double requirement. Rev Neurol(Paris). 2020;176(1-2):100-112. DOI: 10.1016/j.neurol.2019.02.007.

Pyne NJ, Tonelli F, Lim KG, Long J, Edwards J, Pyne S. Targeting sphingosine kinase 1 in cancer. Adv Biol Regul. 2012;52(1):31-38. DOI: 10.1016/j.advenzreg.2011.07.001.

Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713-R715.

DOI: 10.1016/j.cub.2017.05.064.

Pyne NJ, Pyne S. Sphingosine 1-phosphate receptor 1 signaling in mammalian cells. Molecules. 2017;22(3):344,1-18. DOI: 10.3390/molecules22030344.

Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease. Prog Lipid Res, 2016; 62:93-106.DOI: 10.1016/j.plipres.2016.03.001.

O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci. 2013;34(7):401-412.

DOI: 10.1016/j.tips.2013.05.002.

Mitra NK, Singh NSG, Wadingasafi NANB, Chellian J. Locomotor and histological changes in a cuprizone-induced animal model of multiple sclerosis: comparison between alpha-tocopherol and fingolimod. Res Pharm Sci. 2022;17(2):134-142. DOI: 10.4103/1735-5362.335172.

Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883-897. DOI: 10.1038/nrd3248.

Chun J, Hartung H-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91-101. DOI: 10.1097/WNF.0b013e3181cbf825.

Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, et al. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther. 2008;117(1):77-93. DOI: 10.1016/j.pharmthera.2007.08.005.

Hu J, Zhao M, Mi J, Wang B, Sheng L, Chen H, et al. Insights into the metabolic characteristics of aminopropanediol analogues of SYLs as S1P1 modulators: from structure to metabolism to druggability. 18th World Congress of Basic and Clinical Pharmacology. Proceedings for annual meeting of the Japanese pharmacological society. 2018;WCP2018.0:PO2-14-27. DOI: 10.1254/jpssuppl.wcp2018.0_po2-14-27.

Dyckman AJ. Modulators of sphingosine-1-phosphate pathway biology: recent advances of sphingosine-1-phosphate receptor 1 (S1P1) agonists and future perspectives. J Med Chem. 2017;60(13):5267-5289. DOI: 10.1021/acs.jmedchem.6b01575.

Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, et al. Benzofuran derivatives as potent, orally active S1P1 receptor agonists: a preclinical lead molecule for MS. ACS Med Chem lett. 2011;2(2):97-101. DOI: 10.1021/ml100227q.

Li Z, Chen W, Hale JJ, Lynch CL, Mills SG, Hajdu R, et al. Discovery of potent 3, 5-diphenyl-1, 2, 4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3. J Med Chem. 2005;48(20):6169-6173. DOI: 10.1021/jm0503244.

Guan B, Zhang C, Ning J. EDGA: a population evolution direction-guided genetic algorithm for protein-ligand docking. J Comput Biol. 2016;23(7):585-596. DOI: 10.1089/cmb.2015.0190.

BIOVIA DS, Discovery Studio Visualizer, 4.5, San Diego: Dassault Systèmes, 2021.

Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-1013. PMID: 8333944.

Eberhardt J, Santos-Martins D, Tillack A, Forli S. AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021;61(8):3891-3898. DOI: 10.1021/acs.jcim.1c00203.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. DOI: 10.1002/jcc.21334.

The PyMOL Molecular graphics system, Version 1.2r3pre, Schrödinger, LLC.

Mannion JC, Dax SL, Golder FG, Macintyre DE, Mcleod J, Ozola V, et al, inventors; Novel orally bioavailable breathing control modulating compounds, and methods of using same. US Patent CA2891342A1, 2014.

Manohar S, Khan SI, Rawat DS. Synthesis of 4-aminoquinoline‐1, 2, 3‐triazole and 4‐aminoquinoline‐1, 2, 3‐triazole‐1, 3, 5-triazine hybrids as potential antimalarial agents. Chem Biol Drug Des. 2011;78(1):124-136. DOI: 10.1111/j.1747-0285.2011.01115.x.

Beran GJO. Porous materials: designed and then realized. Nat Mater. 2017;16(6):602-604. DOI: 10.1038/nmat4913.

Fujii S, Kobayashi T, Nakatsu A, Miyazawa H, Kagechika H. Synthesis and structure-activity relationship study of triazine-based inhibitors of the DNA binding of NF-κB. Chem Pharm Bull(Tokyo). 2014;62(7):700-708. DOI: 10.1248/cpb.c14-00218.

Skidmore J, Heer J, Johnson CN, Norton D, Redshaw S, Sweeting J, et al. Optimization of sphingosine-1-phosphate-1 receptor agonists: effects of acidic, basic, and zwitterionic chemotypes on pharmacokinetic and pharmacodynamic profiles. J Med Chem. 2014;57(24):10424-10442. DOI: 10.1021/jm5010336.

Bajrami A, Pitteri M, Castellaro M, Pizzini F, Romualdi C, Montemezzi S, et al. The effect of fingolimod on focal and diffuse grey matter damage in active MS patients. J Neurol. 2018;265(9):2154-2161. DOI: 10.1007/s00415-018-8952-2.

Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58(12):1465-1476. DOI: 10.1002/glia.21021.

Bolli MH., Lescop C, and Nayler O. Synthetic sphingosine 1-phosphate receptor modulators-opportunities and potential pitfalls. Curr Top Med Chem, 2011;11(6):726-757. DOI: 10.2174/1568026611109060726.

Roberts, E, Guerrero M, Urbano M, Rosen H. Sphingosine 1-phosphate receptor agonists: a patent review (2010-2012). Expert Opin Ther Pat. 2013;23(7):817-841. DOI: 10.1517/13543776.2013.783022.

Cee VJ, Frohn M, Lanman BA, Golden J, Muller K, Neira S, et al. Discovery of AMG 369, a thiazolo [5, 4-b] pyridine Agonist of S1P1 and S1P5. ACS Med Chem Lett. 2011;2(2):107-112. DOI: 10.1021/ml100306h.

Nishi T, Miyazaki S, Takemoto T, Suzuki K, Iio Y, Nakajima K, et al. Discovery of CS-0777: a potent, selective, and orally active S1P1 agonist. ACS Med Chem Lett. 2011;2(5):368-372. DOI: 10.1021/ml100301k.

Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, et al. Benzofuran derivatives as potent, orally active S1P1 receptor agonists: a preclinical lead molecule for MS. ACS Med Chem Lett. 2011;2(2):97-101.DOI: 10.1021/ml100227q.

Bolli MH, Abele S, Birker M, Bravo R, Bur D, de Kanter R, et al. Novel S1P1 receptor agonists-part 3: from thiophenes to pyridines. J Med Chem. 2014;57(1):110-130. DOI: 10.1021/jm4014696


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.