Design and synthesis of some novel triazine-tyrosine hybrids as potential agents for the treatment of multiple sclerosis
Abstract
Keywords
Full Text:
PDFReferences
Banisharif-Dehkordi F, Mobini-Dehkordi M, Shakhsi-Niaei M, Mahnam K. Design and molecular dynamic simulation of a new double-epitope tolerogenic protein as a potential vaccine for multiple sclerosis disease. Res Pharm Sci. 2019;14(1):20-26. DOI: 10.4103/1735-5362.251849.
Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J. Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis. Res Pharm Sci. 2020;15(6):602-611. DOI: 10.4103/1735-5362.301345.
Yahyazadeh S, Esmaeil N, Shaygannejad V, Mirmosayyeb O. Comparison of follicular T helper cells, monocytes, and T cells priming between newly diagnosed and rituximab-treated MS patients and healthy controls. Res Pharm Sci. 2022;17(3):315-323. DOI: 10.4103/1735-5362.343085.
Weinshenker BG. Epidemiology of multiple sclerosis. Neurol Clin. 1996;14(2):291-308.
Doi: 10.1016/SO733-8619(05)70257-7.
Bordet R, Camu W, De Seze J, Laplaud D-A, Ouallet J-C, Thouvenot E. Mechanism of action of s1p receptor modulators in multiple sclerosis: the double requirement. Rev Neurol(Paris). 2020;176(1-2):100-112. DOI: 10.1016/j.neurol.2019.02.007.
Pyne NJ, Tonelli F, Lim KG, Long J, Edwards J, Pyne S. Targeting sphingosine kinase 1 in cancer. Adv Biol Regul. 2012;52(1):31-38. DOI: 10.1016/j.advenzreg.2011.07.001.
Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol. 2017;27(14):R713-R715.
DOI: 10.1016/j.cub.2017.05.064.
Pyne NJ, Pyne S. Sphingosine 1-phosphate receptor 1 signaling in mammalian cells. Molecules. 2017;22(3):344,1-18. DOI: 10.3390/molecules22030344.
Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease. Prog Lipid Res, 2016; 62:93-106.DOI: 10.1016/j.plipres.2016.03.001.
O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci. 2013;34(7):401-412.
DOI: 10.1016/j.tips.2013.05.002.
Mitra NK, Singh NSG, Wadingasafi NANB, Chellian J. Locomotor and histological changes in a cuprizone-induced animal model of multiple sclerosis: comparison between alpha-tocopherol and fingolimod. Res Pharm Sci. 2022;17(2):134-142. DOI: 10.4103/1735-5362.335172.
Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010;9(11):883-897. DOI: 10.1038/nrd3248.
Chun J, Hartung H-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91-101. DOI: 10.1097/WNF.0b013e3181cbf825.
Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, et al. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther. 2008;117(1):77-93. DOI: 10.1016/j.pharmthera.2007.08.005.
Hu J, Zhao M, Mi J, Wang B, Sheng L, Chen H, et al. Insights into the metabolic characteristics of aminopropanediol analogues of SYLs as S1P1 modulators: from structure to metabolism to druggability. 18th World Congress of Basic and Clinical Pharmacology. Proceedings for annual meeting of the Japanese pharmacological society. 2018;WCP2018.0:PO2-14-27. DOI: 10.1254/jpssuppl.wcp2018.0_po2-14-27.
Dyckman AJ. Modulators of sphingosine-1-phosphate pathway biology: recent advances of sphingosine-1-phosphate receptor 1 (S1P1) agonists and future perspectives. J Med Chem. 2017;60(13):5267-5289. DOI: 10.1021/acs.jmedchem.6b01575.
Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, et al. Benzofuran derivatives as potent, orally active S1P1 receptor agonists: a preclinical lead molecule for MS. ACS Med Chem lett. 2011;2(2):97-101. DOI: 10.1021/ml100227q.
Li Z, Chen W, Hale JJ, Lynch CL, Mills SG, Hajdu R, et al. Discovery of potent 3, 5-diphenyl-1, 2, 4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3. J Med Chem. 2005;48(20):6169-6173. DOI: 10.1021/jm0503244.
Guan B, Zhang C, Ning J. EDGA: a population evolution direction-guided genetic algorithm for protein-ligand docking. J Comput Biol. 2016;23(7):585-596. DOI: 10.1089/cmb.2015.0190.
BIOVIA DS, Discovery Studio Visualizer, 4.5, San Diego: Dassault Systèmes, 2021.
Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-1013. PMID: 8333944.
Eberhardt J, Santos-Martins D, Tillack A, Forli S. AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model. 2021;61(8):3891-3898. DOI: 10.1021/acs.jcim.1c00203.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461. DOI: 10.1002/jcc.21334.
The PyMOL Molecular graphics system, Version 1.2r3pre, Schrödinger, LLC.
Mannion JC, Dax SL, Golder FG, Macintyre DE, Mcleod J, Ozola V, et al, inventors; Novel orally bioavailable breathing control modulating compounds, and methods of using same. US Patent CA2891342A1, 2014.
Manohar S, Khan SI, Rawat DS. Synthesis of 4-aminoquinoline‐1, 2, 3‐triazole and 4‐aminoquinoline‐1, 2, 3‐triazole‐1, 3, 5-triazine hybrids as potential antimalarial agents. Chem Biol Drug Des. 2011;78(1):124-136. DOI: 10.1111/j.1747-0285.2011.01115.x.
Beran GJO. Porous materials: designed and then realized. Nat Mater. 2017;16(6):602-604. DOI: 10.1038/nmat4913.
Fujii S, Kobayashi T, Nakatsu A, Miyazawa H, Kagechika H. Synthesis and structure-activity relationship study of triazine-based inhibitors of the DNA binding of NF-κB. Chem Pharm Bull(Tokyo). 2014;62(7):700-708. DOI: 10.1248/cpb.c14-00218.
Skidmore J, Heer J, Johnson CN, Norton D, Redshaw S, Sweeting J, et al. Optimization of sphingosine-1-phosphate-1 receptor agonists: effects of acidic, basic, and zwitterionic chemotypes on pharmacokinetic and pharmacodynamic profiles. J Med Chem. 2014;57(24):10424-10442. DOI: 10.1021/jm5010336.
Bajrami A, Pitteri M, Castellaro M, Pizzini F, Romualdi C, Montemezzi S, et al. The effect of fingolimod on focal and diffuse grey matter damage in active MS patients. J Neurol. 2018;265(9):2154-2161. DOI: 10.1007/s00415-018-8952-2.
Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58(12):1465-1476. DOI: 10.1002/glia.21021.
Bolli MH., Lescop C, and Nayler O. Synthetic sphingosine 1-phosphate receptor modulators-opportunities and potential pitfalls. Curr Top Med Chem, 2011;11(6):726-757. DOI: 10.2174/1568026611109060726.
Roberts, E, Guerrero M, Urbano M, Rosen H. Sphingosine 1-phosphate receptor agonists: a patent review (2010-2012). Expert Opin Ther Pat. 2013;23(7):817-841. DOI: 10.1517/13543776.2013.783022.
Cee VJ, Frohn M, Lanman BA, Golden J, Muller K, Neira S, et al. Discovery of AMG 369, a thiazolo [5, 4-b] pyridine Agonist of S1P1 and S1P5. ACS Med Chem Lett. 2011;2(2):107-112. DOI: 10.1021/ml100306h.
Nishi T, Miyazaki S, Takemoto T, Suzuki K, Iio Y, Nakajima K, et al. Discovery of CS-0777: a potent, selective, and orally active S1P1 agonist. ACS Med Chem Lett. 2011;2(5):368-372. DOI: 10.1021/ml100301k.
Saha AK, Yu X, Lin J, Lobera M, Sharadendu A, Chereku S, et al. Benzofuran derivatives as potent, orally active S1P1 receptor agonists: a preclinical lead molecule for MS. ACS Med Chem Lett. 2011;2(2):97-101.DOI: 10.1021/ml100227q.
Bolli MH, Abele S, Birker M, Bravo R, Bur D, de Kanter R, et al. Novel S1P1 receptor agonists-part 3: from thiophenes to pyridines. J Med Chem. 2014;57(1):110-130. DOI: 10.1021/jm4014696
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.