Development and evaluation of polycaprolactone-based electrospun nanofibers containing timolol maleate as a sustained-release device for treatment of glaucoma: in vivo evaluation in equine eye

Shahla Mirzaeei , Fatemeh Bahrami Faryadras, Saba Mehrandish, Leila Rezaei, Farid Daneshgar, Ahmad Karami


Background and purpose: Prolonging the drug release can be a suitable approach to overcome the challenges related to topical ophthalmic administration of drugs especially the ones prescribed for chronic ailments. The sustained delivery of the drug would reduce the required frequency of administration which could extremely improve patient compliance and feeling of well-being. This study aimed to develop nanofibrous inserts for sustained ophthalmic delivery of timolol maleate (TIM) for the treatment of glaucoma. Experimental approach: Polycaprolactone-based nanofibers containing TIM were prepared using pure polycaprolactone or a blend of it with cellulose acetate or Eudragit RL100 polymers by the electrospinning method. Following the preparation, polymeric inserts were evaluated for morphological and physicochemical properties. The in vitro drug release was assessed and the in vivo efficacy of a selected insert in decreasing the intraocular pressure (IOP) was also evaluated in the equine eyes. Findings / Results: Prepared nanofibers indicated diameter ranged between 122-174 nm. The formulations showed suitable physicochemical properties and stability for ophthalmic administration. In vitro release study showed prolonged release of drug during more than 3 days. In vivo evaluation revealed that the prepared insert is non-irritant and non-toxic to the equine eyes while having suitable efficacy in decreasing the IOP during 6 days. Conclusions and implication: Prepared TIM inserts indicated a higher efficacy than commercial TIM eye drop in lowering IOP during a prolonged period. Thus, these formulations can be considered suitable for enhancing patient compliance by reducing the frequency of administration in the treatment of glaucoma.


Electrospinning; Equine; Glaucoma; Nanofibers; Ophthalmic drug delivery; Timolol maleate.

Full Text:



Gooch N, Molokhia SA, Condie R, Burr RM, Archer B, Ambati BK, et al. Ocular drug delivery for glaucoma management. Pharmaceutics. 2012;4(1):197-211. DOI: 10.3390/pharmaceutics4010197.

Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep. 2021;11(1):13762,1-12. DOI: 10.1038/s41598-021-92971-w.

Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147-156. DOI: 10.1097/IJG.0b013e31814b990d.

Singh RB, Ichhpujani P, Thakur S, Jindal S. Promising therapeutic drug delivery systems for glaucoma: a comprehensive review. Ther Adv Ophthalmol. 2020;12:2515841420905740,1-17. DOI: 10.1177/2515841420905740.

King-Smith PE, Reuter KS, Braun RJ, Nichols JJ, Nichols KK. Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer images. Invest Ophthalmol Vis Sci. 2013;54(7):4900-4909. DOI: 10.1167/iovs.13-11878.

Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217,1-20. DOI: 10.1007/s11095-018-2498-y.

Tangri P, Khurana S. Basics of ocular drug delivery systems. Int J Res Pharm Biomed Sci. 2011;2(4):1541-1552.

Mehrandish S, Mirzaeei S. Design of novel nanoemulsion formulations for topical ocular delivery of itraconazole: development, characterization and in vitro bioassay. Adv Pharm Bull. 2021;12(1):93-101. DOI: 10.34172/apb.2022.009.

Mehrandish S, Mirzaei S. A review on ocular novel drug delivery systems of antifungal drugs: functional evaluation and comparison of conventional and novel dosage forms. Adv Pharm Bull. 2020;11(1):28-38.DOI: 10.34172/apb.2021.003.

Rawas-Qalaji M, Williams C-A. Advances in ocular drug delivery. Curr Eye Res. 2012;37(5):345-356. DOI: 10.3109/02713683.2011.652286.

Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation. Nanomedicine (Lond). 2019;14(1):33-55. DOI: 10.2217/nnm-2018-0297.

Singla J, Bajaj T, Goyal AK, Rath G. Development of nanofibrous ocular insert for retinal delivery of fluocinolone acetonide. Curr Eye Res. 2019;44(5):541-550. DOI: 10.1080/02713683.2018.1563196.

Mackeben S, Müller-Goymann CC. Solubilization of timolol maleate in reversed micellar systems: measurement of particle size using SAXS and PCS. Int J Pharm. 2000;196(2):207-210. DOI: 10.1016/s0378-5173(99)00423-8.

Natu MV, de Sousa HC, Gil MH. Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. Int J Pharm. 2010;397(1-2):50-58. DOI: 10.1016/j.ijpharm.2010.06.045.

Nashatizadeh MM, Lyons KE, Pahwa R. A review of ropinirole prolonged release in Parkinson’s disease. Clin Interv Aging. 2009;4:179-186. DOI: 10.2147/cia.s3358.

Gagandeep, Garg T, Malik B, Rath G, Goyal AK. Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci. 2014;53:10-16. DOI: 10.1016/j.ejps.2013.11.016.

Mehta P, Al-Kinani AA, Arshad MS, Chang M-W, Alany RG, Ahmad Z. Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers. Int J Pharm. 2017;532(1):408-420. DOI: 10.1016/j.ijpharm.2017.09.029.

Nandhini S, Ilango K. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach. Res Pharm Sci. 2021;16(1):103-117.DOI: 10.4103/1735-5362.305193.

Yasin H, Al-Taani B, Salem MS. Preparation and characterization of ethylcellulose microspheres for sustained-release of pregabalin. Res Pharm Sci. 2021;16(1):1-15.DOI: 10.4103/1735-5362.305184.

Bahri-Najafi R, Tavakoli N, Senemar M, Peikanpour M. Preparation and pharmaceutical evaluation of glibenclamide slow release mucoadhesive buccal film. Res Pharm Sci. 2014;9(3):213-223.PMID: 25657792.

Rezazadeh M, Safaran R, Minaiyan M, Mostafavi A. Preparation and characterization of Eudragit L 100-55/chitosan enteric nanoparticles containing omeprazole using general factorial design: in vitro/in vivo study. Res Pharm Sci. 2021;16(4):358-369.DOI: 10.4103/1735-5362.319574.

Tofighia P, Soltani S, Montazam SH, Montazam SA, Jelvehgari M. Formulation of tolmetin ocuserts as carriers for ocular drug delivery system. Iran J Pharm Res. 2017;16(2):432-441.

Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C Mater Biol Appl. 2009;29(3):663-668. DOI: 10.1016/j.msec.2008.10.037.

Jatoi AW, Kim IS, Ogasawara H, Ni Q-Q. Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties. Mater Sci Eng C Mater Biol Appl. 2019;105:110077,1-8. DOI: 10.1016/j.msec.2019.110077

Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics. 2021;13(8):1228,1-14. DOI: 10.3390/pharmaceutics13081228.

Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioact Mater. 2022;7:341-363. DOI: 10.1016/j.bioactmat.2021.05.032.

Adelli GR, Bhagav P, Taskar P, Hingorani T, Pettaway S, Gul W, et al. Development of a Δ9-tetrahydrocannabinol amino acid-dicarboxylate prodrug with improved ocular bioavailability. Invest Ophthalmol Vis Sci. 2017;58(4):2167-2179. DOI: 10.1167/iovs.16-20757.

Karuppuswamy P, Venugopal JR, Navaneethan B, Laiva AL, Ramakrishna S. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. Mater Lett. 2015;141:180-186. DOI: 10.1016/j.matlet.2014.11.044.

Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS Pharm Sci Tech. 2011;12(4):1335-1347. DOI: 10.1208/s12249-011-9701-3.

Kamble RN, Mehtre RV, Mehta PP, Nangare P, Patil SS. Albendazole electrospun nanofiber films: in-vitro and ex-vivo assessment. BioNanoScience. 2019;9(3):625-636. DOI: 10.1007/s12668-019-00627-x.

AnjiReddy K, Karpagam S. Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; preparation and in vivo evaluation. Int J Biol Macromol. 2019;124:871-887. DOI: 10.1016/j.ijbiomac.2018.11.224.

Ali A, Kumar N, Ahad A, Aqil M, Sultana Y. Enhanced delivery of diclofenac diethylamine loaded Eudragit RL 100® transdermal system against inflammation. J Polym Eng. 2015;35(7):699-708. DOI: 10.1515/polyeng-2014-0352.

Chou S-F, Woodrow KA. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater. 2017;65:724-733. DOI: 10.1016/j.jmbbm.2016.09.004.

Tang C, Chen P, Liu H. Cocontinuous cellulose acetate/polyurethane composite nanofiber fabricated through electrospinning. Polym Eng Sci. 2008;48(7):1296-1303. DOI: 10.1002/pen.21090.

Ravikumar R, Ganesh M, Senthil V, Ramesh YV, Jakki SL, Choi EY. Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: preparation, characterization, and in vitro diffusion evaluations. J Drug Deliv Sci Technol. 2018;44:342-348. DOI: 10.1016/j.jddst.2018.01.016.

Karavasili C, Komnenou A, Katsamenis OL, Charalampidou G, Kofidou E, Andreadis D, et al. Self-assembling peptide nanofiber hydrogels for controlled ocular delivery of timolol maleate. ACS Biomater Sci Eng. 2017;3(12):3386-3394. DOI: 10.1021/acsbiomaterials.7b00706.

Mehrandish S, Mohammadi G, Mirzaeei S. Preparation and functional evaluation of electrospun polymeric nanofibers as a new system for sustained topical ocular delivery of itraconazole. Pharm Dev Technol. 2022;27(1):25-39. DOI: 10.1080/10837450.2021.2018609.

Mishra V, Jain N. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1-2):380-390. DOI: 10.1016/j.ijpharm.2013.11.043.

Urtti A, Rouhiainen H, Kaila T, Saano V. Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res. 1994;11(9):1278-1282. DOI: 10.1023/a:1018938310628.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.