Design of two immunotoxins based rovalpituzumab antibody against DLL3 receptor; a promising potential opportunity

Mohammad Hossein Ataee , Seyed Ali Mirhosseini, Reza Mirnejad, Ehsan Rezaie, Hamideh Mahmoodzadeh Hosseini , Jafar Amani

Abstract


Background and purpose: The lack of a new effective treatment for small cell lung cancer (SCLC) is an unresolved problem. Due to the new identification of delta-like ligand 3 (DLL3) and its high expression in SCLC patients, the use of  DLL3 in target therapy can be effective. The use of bacterial toxins belonging to the ADP-ribosyl transferase toxins family and human enzymes to remove cancerous cells has been effective in the structure of immunotoxins. In this study, single-chain fragment variable of rovalpituzumab antibody fused to granzyme B (Rova-GrB) and PltA of typhoid toxin (Rova-Typh) as immunotoxins were designed, and bioinformatics analysis was done.

Experimental approach: In silico analysis including the physicochemical properties, evaluation of the secondary and tertiary structure, refinement and validation of 3D models, and docking were performed. Immunotoxin genes were cloned and expressed in the Escherichia coli BL21 (DE3) host, purified, subsequently confirmed by western blotting and their secondary structure was evaluated by the circular dichroism method.

Findings/Results: The bioinformatics analysis showed that Rova-GrB and Rova-Typh had hydrophilic properties, their codon optimization parameters were standard, validation parameters were improved after immunotoxin refinement, and docking analysis showed that the binding domain of immunotoxins could bind the N-terminal region of DLL3. immunotoxins had high expression and after purification under denaturing condition by Ni-NTA column, the immunotoxins were dialyzed against PBS buffer.

Conclusion and implications: The immunotoxins had the right structure and can be produced in a prokaryotic host. The recombinant immunotoxins against DLL3 can be promising therapeutic agents for SCLC cancer.

 


Keywords


Keywords: DLL3; In silico design; Rovalpituzumab; SCLC.

Full Text:

PDF

References


Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. DOI: 10.3322/caac.21492.

Taniguchi H, Sen T, Rudin CM. Targeted therapies and biomarkers in small cell lung cancer. Front Oncol. 2020;10:741-747. DOI: 10.3389/fonc.2020.00741.

Baize N, Monnet I, Greillier L, Quere G, Kerjouan M, Janicot H, et al. Second-line treatments of small-cell lung cancers. Expert Rev Anticancer Ther. 2017;17(11):1033-1043. DOI: 10.1080/14737140.2017.1372198.

Ke X, Shen L. Molecular targeted therapy of cancer: the progress and future prospect. Frontiers in Laboratory Medicine. 2017;1(2):69-75. DOI. org/10.1016/j.flm.2017.06.001.

Shoari A, Khodabakhsh F, Ahangari Cohan R, Salimian M, Karami E. Anti-angiogenic peptides application in cancer therapy; a review. Res Pharm Sci. 2021;16(6):559-574.DOI: 10.4103/1735-5362.327503

Jahanian-Najafabadi A, Bouzari S, Oloomi M, Habibi Roudkenar M, Shokrgozar MA. Assessment of selective toxicity of insect cell expressed recombinant A1-GMCSF protein toward GMCSF receptor bearing tumor cells. ResPharm Sci. 2012;7(3):133-140.PMID: 23181091.

Phillips GL, editor. Antibody-Drug Conjugates and Immunotoxins: from Pre-Clinical Development to Therapeutic Applications. New York: Springer Science & Business Media; 2013. pp.255-272.DOI:10.1007/978-1-4614-5456-4

Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J. Immunotoxin: a new tool for cancer therapy. Tumor Biol. 2017;39(2):1-11. DOI: 10.1177/1010428317692226.

Hamamichi S, Fukuhara T, Hattori N. Immunotoxin screening system: a rapid and direct approach to obtain functional antibodies with internalization capacities. Toxins (Basel). 2020;12(10):658-673.DOI: 10.3390/toxins12100658.

Onda M, Nagata S, FitzGerald DJ, Beers R, Fisher RJ, Vincent JJ, et al. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol. 2006;177(12):8822-8834. DOI: 10.4049/jimmunol.177.12.8822.

Rezaie E, Amani J, Pour AB, Hosseini HM. A new scfv-based recombinant immunotoxin against EPHA2-overexpressing breast cancer cells; high in vitro anti-cancer potency. EurJ Pharmacol. 2020;870:1-10. DOI: 10.1016/j.ejphar.2020.172912.

Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7(302):302ra136,1-28..DOI: 10.1126/scitranslmed.aac9459.

Furuta M, Kikuchi H, Shoji T, Takashima Y, Kikuchi E, Kikuchi J, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. Cancer Sci. 2019;110(5):1599-1608. DOI: 10.1111/cas.13997.

Wu W-S, Hu C-T, editors. Signal Transduction in Cancer Metastasis. Vol 15. New York Springer Science & Business Media; 2010. pp. 157-174.DOI:10.1007/978-90-481-9522-0

Leonetti A, Facchinetti F, Minari R, Cortellini A, Rolfo CD, Giovannetti E, et al. Notch pathway in small-cell lung cancer: from preclinical evidence to therapeutic challenges. Cell Oncol(Dordr). 2019;42(3):261-273.DOI: 10.1007/s13402-019-00441-3.

Xiu MX, Liu YM, Kuang Bh. The role of DLLs in cancer: a novel therapeutic target. Onco Targets Ther. 2020;13:3881-3901. DOI: 10.2147/OTT.S244860.

Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. The Lancet Oncol. 2017;18(1):42-51. DOI: 10.1016/S1470-2045(16)30565-4.

Owen DH, Giffin MJ, Bailis JM, Smit MAD, Carbone DP, He K. DLL3: an emerging target in small cell lung cancer. J Hematol Oncol. 2019;12(1):1-8. DOI: 10.1186/s13045-019-0745-2.

Byers LA, Chiappori A, Smit M-AD. Phase 1 study of AMG 119, a chimeric antigen receptor (CAR) T cell therapy targeting DLL3, in patients with relapsed/refractory small cell lung cancer (SCLC). Am J Clin Oncol.; 2019;37-15_suppl.DOI: 10.1200/JCO.2019.37.15_suppl.TPS8576.

Alouf J, Ladant D, Popoff MR. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Elsevier; 2015. pp. 1151-1182.DOI: 10.1016/C2013-0-14258-4.

Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol. 2014;12(9):599-611.DOI: 10.1038/nrmicro3310.

Chong A, Lee S, Yang Y-A, Song J. The role of Typhoid toxin in Salmonella typhi virulence. Yale J Biol Med. 2017;90(2):283-290. PMID: 28656014.

Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science. 2000;290(5490):354-357. DOI: 10.1126/science.290.5490.354.

Mangmool S, Kurose H. Gi/o protein-dependent and-independent actions of Pertussis toxin (PTX). Toxins(Basel). 2011;3(7):884-899.DOI: 10.3390/toxins3070884.

Miller R, Wiedmann M. Dynamic duo-the Salmonella cytolethal distending toxin combines ADP-ribosyltransferase and nuclease activities in a novel form of the cytolethal distending toxin. Toxins(Basel). 2016;8(5):121-140.DOI: 10.3390/toxins8050121.

Mathew M, Verma RS. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci. 2009;100(8):1359-1365. DOI: 10.1111/j.1349-7006.2009.01192.x.

Stull RA, Saunders L, Dylla SJ, Foord O, Liu D, Torgov M, et al., inventors. Anti-DLL3 antibody drug conjugates. Patent No. US-9770518-B1. Available on: patents.google.com/patent/US9770518B1.

Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876-2890.DOI: 10.1038/nprot.2006.202.

Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics. 2010;26(7):889-895.DOI: 10.1093/bioinformatics/btq066.

Bhattacharya D, Nowotny J, Cao R, Cheng J. 3D refine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44(W1):W406-W409. DOI: 10.1093/nar/gkw336.

Jones DT, Cozzetto D. DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics. 2015;31(6): 857-863. DOI: 10.1093/bioinformatics/btu744.

Kosciolek T, Buchan DW, Jones DT. Predictions of backbone dynamics in intrinsically disordered proteins using de novo fragment-based protein structure predictions. Sci Rep. 2017;7(1):6999-7011. DOI: 10.1038/s41598-017-07156-1.

Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequenceBioinformatics. 2017;33(19):3098-3100.DOI: 10.1093/bioinformatics/btx345.

Saltos A, Shafique M, Chiappori A. Update on the biology, management, and treatment of small cell lung cancer (SCLC). Front Oncol. 2020;10:1074-1087. DOI: 10.3389/fonc.2020.01074.

Li M, Liu ZS, Liu XL, Hui Q, Lu SY, Qu LL, et al. Clinical targeting recombinant immunotoxins for cancer therapy. Onco TargetsTher. 2017;10:3645-3665. Doi: 10.2147/OTT.S134584.

Gharbavi M, Danafar H, Amani J, Sharafi A. Immuno-informatics analysis and expression of a novel multi-domain antigen as a vaccine candidate against glioblastoma. Int Immunopharmacol. 2021;91:107265-107284.DOI: 10.1016/j.intimp.2020.107265.

Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Amani J, Behzadi E, Imani Fooladi AA. In silico evaluation of two targeted chimeric proteins based on bacterial toxins for breast cancer therapy. Int J Cancer Manag. 2019;12(2):e83315,1-10.DOI: 10.5812/ijcm.83315.

Keshtvarz M, Salimian J, Yaseri M, Bathaie SZ, Rezaie E, Aliramezani A, et al. Bioinformatic prediction and experimental validation of a PE38-based recombinant immunotoxin targeting the Fn14 receptor in cancer cells. Immunotherapy. 2017;9(5):387-400.DOI: 10.2217/imt-2017-0008.

Moghadam ZM, Halabian R, Sedighian H, Behzadi E, Amani J, Fooladi AAI. Designing and analyzing the structure of DT-STXB fusion protein as an anti-tumor agent: an in silico approach. Iran J Pathol. 2019;14(4):305-312.DOI. 10.30699/ijp.2019.101200.2004

Rezaie E, Pour AB, Amani J, Hosseini HM. Bioinformatics predictions, expression, purification and structural analysis of the PE38KDEL-scfv immunotoxin against EPHA2 receptor. Int J Pept Res Ther. 2020;26(2):979-996.DOI. 10.1007/s10989-019-09901-8

Mohammadi M, Rezaie E, Sakhteman A, Zarei N. A highly potential cleavable linker for tumor targeting antibody-chemokines. J Biomol Struct Dyn. 2020:1-11. DOI: 10.1080/07391102.2020.1841025.

Rezaie E, Mohammadi M, Sakhteman A, Bemani P, Ahrari S. Application of molecular dynamics simulations to design a dual-purpose oligopeptide linker sequence for fusion proteins. J Mol Model. 2018;24(11):313-321. DOI: 10.1007/s00894-018-3846-x.

Shafiee F, Rabbani M, Behdani M, Jahanian-Najafabadi A. Expression and purification of truncated diphtheria toxin, DT386, in Escherichia coli: an attempt for production of a new vaccine against diphtheria. Res Pharm Sci. 2016;11(5):428-434.DOI: 10.4103/1735-5362.192496.

Wawrzynczak E, Derbyshire EJ, Henry RV, Parnell GD, Smith A, Waibel R, et al. Selective cytotoxic effects of a ricin A chain immunotoxin made with the monoclonal antibody SWA11 recognising a human small cell lung cancer antigen. Br J Cancer. 1990;62(3):410-414.DOI: 10.1038/bjc.1990.308.

Wawrzynczak EJ, Zangemeister-Wittke U, Waibel R, Henry RV, Parnell GD, Cumber AJ, et al. Molecular and biological properties of an abrin A chain immunotoxin designed for therapy of human small cell lung cancer. Br J Cancer. 1992;66(2):361-366.DOI: 10.1038/bjc.1992.271.

Myklebust AT, Godal A, Pharo A, Juell S, Fodstad Ø. Eradication of small cell lung cancer cells from human bone marrow with immunotoxins. Cancer Res. 1993;53(16):3784-3788. PMID: 8393381.

Fidias P, Grossbard M, Lynch Jr TJ. A phase II study of the immunotoxin N901-blocked ricin in small-cell lung cancer. Clin Lung Cancer. 2002;3(3):219-222.DOI: 10.3816/clc.2002.n.006.

Mattoo AR, Fitzgerald DJ. Combination treatments with ABT‐263 and an immunotoxin produce synergistic killing of ABT‐263‐resistant small cell lung cancer cell lines. Int J Cancer. 2013;132(4):978-987. DOI: 10.1002/ijc.27732.

Rodakowska E, Walczak‑Drzewiecka A, Borowiec M, Gorzkiewicz M, Grzesik J, Ratajewski M, et al. Recombinant immunotoxin targeting GPC3 is cytotoxic to H466 small cell lung cancer cells. Oncol Lett. 2021;21(3):222-233. DOI: 10.3892/ol.2021.12483.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.