Design and production of a novel chimeric human growth hormone superagonist fused to human Fc domain
Abstract
Background and purpose: Growth hormone (GH) has been known as a crucial metabolic hormone expressed at the pituitary and the other number of cells and tissues and responsible for body growth. Because of the short half-life of GH, daily subcutaneous injections were shown to be more effective for GH therapy. This represents a burden for patients. So, there is a strong effort from the industry to create a long-acting form of GH and lots of technologies like GH fusion proteins are used to increase GH half-life.
Experimental approach: In this study, the Fc domain of human IgG1 with serine-glycine linkers was attached to the C-terminal of a GH superagonist via molecular cloning. The presence of recombinant vector in E. coli host was confirmed by PCR. SDS-PAGE and western blot analysis showed the expression of recombinant proteins in the bacterial lysate. The binding ability to growth hormone receptors is determined by ELISA.
Findings / Results: Our results showed that the novel SupGH-Fc has a good binding affinity to its receptor in ELISA in comparison to standard GH, although it has a big size.
Conclusion and implications: Our data in this study clearly demonstrated the expression of the SupGH-Fc in a recombinant protein expression system. It is an introduction to the production of the new recombinant GH, which can bind to its receptor more effectively than commercial growth hormones and also might have a longer half-life.
Keywords
Full Text:
PDFReferences
Devesa J, Almengló C, Devesa P. Multiple effects of growth hormone in the body: is it really the hormone for growth? Clin Med Insights Endocrinol Diabetes. 2016;9:47-71.
DOI: 10.4137/CMED.S38201.
Bagherinejad MR, Sadeghi HMM, Abedi D, Chou CP, Moazen F, Rabbani M. Twin arginine translocation system in secretory expression of recombinant human growth hormone. Res Pharm Sci. 2016;11(6):461-469.
DOI: 10.4103/1735-5362.194871.
Savari M, Esfahani SHZ, Edalati M, Biria D. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method. Protein Expr Purif. 2015;114: 128-135.
DOI: 10.1016/j.pep.2015.06.006.
Kim SJ, Kwak HH, Cho SY, Sohn YB, Park SW, Huh R, et al. Pharmacokinetics, pharmacodynamics, and efficacy of a novel long-acting human growth hormone: Fc fusion protein. Mol Pharm. 2015;12(10):3759-3765.
DOI: 10.1021/acs.molpharmaceut.5b00550.
Ghavim M, Abnous K, Arasteh F, Taghavi S, Nabavinia MS, Alibolandi M, et al. High level expression of recombinant human growth hormone in Escherichia coli: crucial role of translation initiation region. Res Pharm Sci. 2017;12(2):168-175.
DOI: 10.4103/1735-5362.202462.
Rezaei M, Zarkesh-Esfahani SH. Optimization of production of recombinant human growth hormone in Escherichia coli. J Res Med Sci. 2012;17(7):681-685.
PMID: 23798931.
Azadi S, Sadjady SK, Mortazavi SA, Naghdi N, Mahboubi A, Solaimanian R. Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharm Sci. 2018;13(3):222-238.
DOI: 10.4103/1735-5362.228953.
Kopchick J, Parkinson C, Stevens E, Trainer PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev. 2002;23(5):623-646.
DOI: 10.1210/er.2001-0022.
Høybye C, Cohen P, Hoffman AR, Ross R, Biller BM, Christiansen JS. Status of long-acting-growth hormone preparations-2015. Growth Horm IGF Res. 2015;25(5):201-206.
DOI: 10.1016/j.ghir.2015.07.004.
Miller BS, Velazquez E, Yuen KC. Long-acting growth hormone preparations-current status and future considerations. J Clin Endocrinol Metab. 2020;105(6):e2121-e2133.
DOI: 10.1210/clinem/dgz149.
Podust VN, Balan S, Sim BC, Coyle MP, Ernst U, Peters RT, et al. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release. 2016;240:52-66.
DOI: 10.1016/j.jconrel.2015.10.038.
Soheili S, Jahanian-Najafabadi A, Akbari V. Evaluation of soluble expression of recombinant granulocyte macrophage stimulating factor (rGM-CSF) by three different E. coli strains. Res Pharm Sci. 2020;15(3):218-225.
DOI: 10.4103/1735-5362.288424.
Vijayakumar A, Yakar S, LeRoith D. The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne). 2011;2:32-42.
DOI: 10.3389/fendo.2011.00032.
Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc‐fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4(10):1015-1028.
DOI: 10.1002/emmm.201201379.
Lu M, Flanagan JU, Langley RJ, Hay MP, Perry JK. Targeting growth hormone function: strategies and therapeutic applications. Signal Transduct Target Ther. 2019;4(1):3-13.
DOI: 10.1038/s41392-019-0036-y.
Zhou L, Wang HY, Tong S, Okamoto CT, Shen WC, Zaro JL. Single chain Fc-dimer-human growth hormone fusion protein for improved drug delivery. Biomaterials. 2017;117:24-31.
DOI: 10.1016/j.biomaterials.2016.11.051.
Peter F, Savoy C, Ji HJ, Juhasz M, Bidlingmaier M, Saenger P. Pharmacokinetic and pharmacodynamic profile of a new sustained-release GH formulation, LB03002, in children with GH deficiency. Eur J Endocrinol. 2009;160(3):349-355.
DOI: 10.1530/EJE-08-0703.
Søndergaard E, Klose M, Hansen M, Hansen BS, Andersen M, Feldt-Rasmussen U, et al. Pegylated long-acting human growth hormone possesses a promising once-weekly treatment profile, and multiple dosing is well tolerated in adult patients with growth hormone deficiency. J Clin Endocrinol Metab. 2011;96(3):681-688.
DOI: 10.1210/jc.2010-1931.
Yuen KC, Conway GS, Popovic V, Merriam GR, Bailey T, Hamrahian AH, et al. A long-acting human growth hormone with delayed clearance (VRS-317): results of a double-blind, placebo-controlled, single ascending dose study in growth hormone-deficient adults. J Clin Endocrinol Metab. 2013;98(6):2595-2603.
DOI: 10.1210/jc.2013-1437.
Höybye C, Christiansen JS. Long-acting growth hormone. Paediatr Drugs. 2013;15(6):427-429.
DOI: 10.1007/s40272-013-0059-8.
Touraine P, D'Souza GA, Kourides I, Abs R, Barclay P, Xie R, et al. Lipoatrophy in GH deficient patients treated with a long-acting pegylated GH. Eur J Endocrinol. 2009;161(4):533-540.
DOI: 10.1530/EJE-09-0422.
Cleland JL, Geething NC, Moore JA, Rogers BC, Spink BJ, Wang CW, et al. A novel long-acting human growth hormone fusion protein (VRS-317): enhanced in vivo potency and half-life. J Pharm Sci. 2012;101(8):2744-2754.
DOI: 10.1002/jps.23229.
Wang Y, Langley RJ, Tamshen K, Jamieson SM, Lu M, Maynard HD, et al. long-acting human growth hormone receptor antagonists produced in E. Coli and conjugated with polyethylene glycol. Bioconjug Chem. 2020;31(6):1651-1660.
DOI: 10.1021/acs.bioconjchem.0c00208.
Kopchick JJ. Discovery and mechanism of action of pegvisomant. Eur J Endocrinol. 2003;148(Suppl 2):S21-S25.
DOI: 10.1530/eje.0.148s021.
Wang YMC, Sloey B, Wong T, Khandelwal P, Melara R, Sun YN. Investigation of the pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res. 2011;28(8):1931-1938.
DOI: 10.1007/s11095-011-0420-y.
Wu B, Sun YN. Pharmacokinetics of peptide-Fc fusion proteins. J Pharm Sci. 2014;103(1):53-64.
DOI: 10.1002/jps.23783.
Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868-876.
DOI: 10.1016/j.copbio.2011.06.012.
Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res. 2011;317(9):1261-1269.
DOI: 10.1016/j.yexcr.2011.02.013.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.