Antiproliferative activity of CD44 siRNA-PEI-PEG nanoparticles in glioblastoma: involvement of AKT signaling

Parvaneh Mahinfar , Ahad Mokhtarzadeh, Behzad Baradaran , Elham Siasi Torbati

Abstract


Background and purpose: Glioblastoma multiforme (GBM) is the most invasive type of cancer which starts inside the brain. GBM cells were found to have similar properties to glioblastoma cancer stem cells. CD44 can be used as a marker of the cancer stem cells in a subset of glioblastoma tumor cells. Recent studies showed that CD44 is involved in developing cancer cells via the protein kinase B (PKB or AKT) signaling pathway. Therefore, this study aimed to investigate the CD44 mRNA silencing effects on the glioblastoma cell cycle via AKT signaling pathway.

Experimental approach: To determine CD44 expression in the samples of the patients with GBM, we used the analysis of data extracted from TCGA database. qRT-PCR and western blotting were used to evaluate the expression level of genes and proteins. Different cell cycles were evaluated by DAPI staining and flow cytometry.

Findings/Results: Bioinformatics results showed that CD44 expression level in GBM tumor samples is higher than in normal samples. Effects of poly (ethylene imine)-polyethylene glycol (PEI-PEG)-loaded CD44 siRNA in cell cycle showed that CD44 silencing could inhibit cell cycle in G0-G1 phase by more than 20% compared to the negative control (P < 0.05). Furthermore, PEI-PEG-loaded CD44 siRNA reduces the expression of cyclin D1 and CKD-4. According to our findings, this structure also prevented AKT phosphorylation at                 Thr-308 and Ser-473.

Conclusion and implications: Our results suggest that PEI-PEG-loaded CD44 siRNA may attenuate the cell cycle by suppressing AKT signaling pathway.


Keywords


Keywords: AKT; CD44; Cell cycle; Glioblastoma.

Full Text:

PDF

References


Abbasi A, Hajialyani M, Hosseinzadeh L, Jalilian F, Yaghmaei P, Navid SJ, et al. Evaluation of the cytotoxic and apoptogenic effects of cinnamaldehyde on U87MG cells alone and in combination with doxorubicin. Res Pharm Sci. 2020;15(1):26-35.

DOI: 10.4103/1735-5362.278712.

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299-312.

DOI: 10.3322/caac.21613.

Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WCS, Mansoori B. Long non-coding RNAs in multidrug resistance of glioblastoma. Genes. 2021;12(3):455-473.

DOI: 10.3390/genes12030455.

Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, et al. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer. 2017;17(1):99-109.

DOI: 10.1186/s12885-017-3058-2.

Volovetz J, Berezovsky AD, Alban T, Chen Y, Lauko A, Aranjuez GF, et al. Identifying conserved molecular targets required for cell migration of glioblastoma cancer stem cells. Cell Death Dis. 2020;11(2):152-163.

DOI: 10.1038/s41419-020-2342-2.

Babaei G, Ansari MHK, Aziz SGG, Bazl MR. Alantolactone inhibits stem-like cell phenotype, chemoresistance and metastasis in PC3 cells through STAT3 signaling pathway. Res Pharm Sci. 2020;15(6):551-562.

DOI: 10.4103/1735-5362.301340.

Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2(2):152-163.

DOI: 10.1016/j.gendis.2015.02.001.

Wu G, Song X, Liu J, Li S, Gao W, Qiu M, et al. Expression of CD44 and the survival in glioma: a meta-analysis. Biosci Rep. 2020;40(4):BSR20200520,1-10.

DOI: 10.1042/BSR20200520.

Li XP, Zhang XW, Zheng LZ, Guo WJ. Expression of CD44 in pancreatic cancer and its significance. Int J Clin Exp Pathol. 2015;8(6):6724-6731.

PMID: 26261555.

Xiaoping L, Xiaowei Z, Leizhen Z, Weijian G. Expression and significance of CD44 and p-AKT in pancreatic head cancer. World J Surg Oncol. 2015;13:334-340.

DOI: 10.1186/s12957-015-0746-8.

Zhang YJ, Xu ZG, Li SQ, He LJ, Tang Y, Chen ZZ, et al. Benzimidazoisoquinoline derivatives inhibit glioblastoma cell proliferation through down-regulating Raf/MEK/ERK and PI3K/AKT pathways. Cancer Cell Int. 2018;18(1):90-101.

DOI: 10.1186/s12935-018-0588-x.

Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6(11):1359-1370.

DOI: 10.15252/emmm.201302627.

Stevens GHJ. Antiepileptic therapy in patients with central nervous system malignancies. Curr Neurol Neurosci Rep. 2006;6(4):311-318.

DOI: 10.1007/s11910-006-0024-9.

Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190-198.

DOI: 10.3171/jns.2001.95.2.0190.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. DOI: 10.3322/caac.21492.

Li X, Nair A, Wang S, Wang L. Quality control of RNA-seq experiments. Methods Mol Biol. 2015;1269:137-146.

DOI: 10.1007/978-1-4939-2291-8_8.

Safari F, Tamadon A, Zarghami N, Abolmali S, Najafi H. Effect of degree of polyethyleneimine PEGylation on biological and cellular activity of hTERT siRNA. Res Pharm Sci. 2012;7(5):S1033.

Mahinfar P, Mokhtarzadeh A, Baradaran B, Torbati ES. Effects of PEI-PEG nanoparticles loaded with CD44 siRNA on inhibition of growth, invasion, and migration of glioblastoma cells. Crescent J Med Biol Sci. 2021;8(3):215-222.

Brown DV, Filiz G, Daniel PM, Hollande F, Dworkin S, Amiridis S, et al. Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One. 2017;12(2):e0172791-e,1-17.

DOI: 10.1371/journal.pone.0172791.

Mihić J, Rotim K, Vučić M, Hude Dragičević I, Borić M, Lugović-Mihić L. Prognostic role of CD44 expression and neovascularization determined by endoglin (CD105) in glioblastoma patients. Acta Clin Croat. 2019;58(3):455-462.

DOI: 10.20471/acc.2019.58.03.08.

Xu Y, Stamenkovic I, Yu Q. CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res. 2010;70(6):2455-2464.

DOI: 10.1158/0008-5472.CAN-09-2505.

Wang HH, Liao CC, Chow NH, Huang LL, Chuang JI, Wei KC, et al. Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res. 2017;9(11):4785-4806.

PMID: 29218080.

Yeh M, Wang YY, Yoo JY, Oh C, Otani Y, Kang JM, et al. MicroRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Sci Rep. 2021;11(1):9219-9229.

DOI: 10.1038/s41598-021-88615-8.

Park YS, Huh JW, Lee JH, Kim HR. shRNA against CD44 inhibits cell proliferation, invasion and migration, and promotes apoptosis of colon carcinoma cells. Oncol Rep. 2012;27(2):339-346.

DOI: 10.3892/or.2011.1532.

Papadopoulos F, Isihou R, Alexiou GA, Tsalios T, Vartholomatos E, Markopoulos GS, et al. Haloperidol induced cell cycle arrest and apoptosis in glioblastoma cells. Biomedicines. 2020;8(12):595-606.

DOI: 10.3390/biomedicines8120595.

Lai CJ, Lin CY, Liao WY, Hour TC, Wang HD, Chuu CP. CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of hippo-yap signaling. Cells. 2019;8(4):295-307.

DOI: 10.3390/cells8040295.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.