Comparison of four methods of colon cancer cell lysates preparation for ex vivo maturation of dendritic cells

Mohammad Roufarshbaf , Nafiseh Esmaeil, Vajihe Akbari


Background and purpose: One of the most effective methods for the development of dendritic cell (DC)-based cancer immunotherapy is ex vivo pulsing of DCs with tumor cell lysates (TCLs). However, antitumor immune responses of DCs are significantly influenced by how TCLs were prepared. Here, we compared four strategies of TCL preparation derived from colon cancer cells, HT-29, for ex vivo maturation of DCs.

Experimental approach: Peripheral blood monocytes were isolated from healthy volunteers and incubated with granulocyte macrophage colony-stimulating factor and interleukin (IL)-4 to differentiate into DCs in                   10 days. Morphological properties, phenotype characteristics (i.e. CD83 and CD86), and cytokine production (i.e. IL-10 and interferon gamma) of DCs loaded with four different TCLs (i.e. freeze-thaw, hypochlorous acid (HOCl), hyperthermia, and UV irradiation) were evaluated.

Findings/Results: HOCl preparations led to the generation of DCs with higher surface expression of maturation biomarkers (particularly CD83), while UV preparations resulted in DCs with lower levels of surface biomarkers compared to freeze-thawed preparations. The supernatant of DCs pulsed with HOCl preparation showed significantly higher levels of interferon gamma and lower levels of IL-10 compared with the other groups.

Conclusion and implications: Our results suggest that pulsing DCs with HOCl preparation may be superior to other TCLs preparation strategies, possibly due to induction of rapid necrotic cell death.


Keywords: Antigen loading; Colorectal cancer; Dendritic cell; Hypochlorous acid, Tumor cell lysate.

Full Text:



Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1):16-27.

DOI: 10.1158/1055-9965.EPI-15-0578.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5): E359-E386.

DOI: 10.1002/ijc.29210.

Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177-193.

DOI: 10.3322/caac.21395.

Xiang B, Snook AE, Magee MS, Waldman SA. Colorectal cancer immunotherapy. Discov Med. 2013;15(84):301-308.

PMID: 23725603.

Caisova V, Li L, Gupta G, Jochmanova I, Jha A, Uher O, et al. The significant reduction or complete eradication of subcutaneous and metastatic lesions in a pheochromocytoma mouse model after immunotherapy using mannan-BAM, TLR ligands, and anti-CD40. Cancers. 2019;11(5):654-674.

DOI: 10.3390/cancers11050654.

Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018;9(1):160-169.

DOI: 10.21037/jgo.2018.01.17.

Koido S, Ohkusa T, Homma S, Namiki Y, Takakura K, Saito K, et al. Immunotherapy for colorectal cancer. World J Gastroenterol. 2013;19(46): 8531-8542.

DOI: 10.3748/wjg.v19.i46.8531.

Wei FQ, Sun W, Wong TS, Gao W, Wen YH, Wei JW, et al. Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination. J Exp Clin Cancer Res. 2016;35:18-26.

DOI: 10.1186/s13046-016-0295-1.

Chiang CL, Ledermann JA, Rad AN, Katz DR, Chain BM. Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells. Cancer Immunol Immunother. 2006;55(11): 1384-1395.

DOI: 10.1007/s00262-006-0127-9.

Strome SE, Voss S, Wilcox R, Wakefield TL, Tamada K, Flies D, et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 2002;62(6):1884-1889.

PMID: 11912169.

Chiang CLL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801-4815.

DOI: 10.1158/1078-0432.CCR-13-1185.

Chiang CLL, Hagemann AR, Leskowitz R, Mick R, Garrabrant T, Czerniecki BJ, et al. Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PloS One. 2011;6(12):e28732.

DOI: 10.1371/journal.pone.0028732.

Mookerjee A, Graciotti M, Kandalaft LE, Kandalaft L. A cancer vaccine with dendritic cells differentiated with GM-CSF and IFNα and pulsed with a squaric acid treated cell lysate improves T cell priming and tumor growth control in a mouse model. Bioimpacts. 2018;8(3):211-221.

DOI: 10.15171/bi.2018.24.

Nava S, Dossena M, Pogliani S, Pellegatta S, Antozzi C, Baggi F, et al. An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PloS One. 2012;7(12):e52301,1-7.

DOI: 10.1371/journal.pone.0052301.

Bachleitner-Hofmann T, Strohschneider M, Krieger P, Sachet M, Dubsky P, Hayden H, et al. Heat shock treatment of tumor lysate-pulsed dendritic cells enhances their capacity to elicit antitumor T cell responses against medullary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(11):4571-4577.

DOI: 10.1210/jc.2006-0971.

Soheili S, Jahanian-Najafabadi A, Akbari V. Evaluation of soluble expression of recombinant granulocyte macrophage stimulating factor (rGM-CSF) by three different E. coli strains. Res Pharm Sci. 2020;15(3):218-225.

DOI: 10.4103/1735-5362.288424.

Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren W, et al. Nifuroxazide prompts antitumor immune response of TCL-loaded DC in mice with orthotopically-implanted hepatocarcinoma. Oncol Rep. 2017;37:3405-3414.

DOI: 10.3892/or.2017.5629.

Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer. 2018;4(2):119-137.

DOI: 10.1016/j.trecan.2017.12.007.

O’Neill D, Bhardwaj N. Generation of Autologous Peptide- and Protein-Pulsed Dendritic Cells for Patient-Specific Immunotherapy. In: Ludewig B, Hoffmann MW, editors. Adoptive Immunotherapy: Methods and Protocols. Humana Press; 2005. pp. 97-112.

DOI: 10.1385/1-59259-862-5:097.

Figueroa G, Parira T, Laverde A, Casteleiro G, El-Mabhouh A, Nair M, et al. Characterization of human monocyte-derived dendritic cells by imaging flow cytometry: a comparison between two monocyte isolation protocols. J Vis Exp. 2016(116):e54296,1-9.

DOI: 10.3791/54296.

Fournier P, Arnold A, Schirrmacher V. Polarization of human monocyte-derived dendritic cells to DC1 by in vitro stimulation with Newcastle disease virus. J BUON. 2009;14Suppl 1:S111-S122.

PMID: 19785053.

Giermasz AS, Urban JA, Nakamura Y, Watchmaker P, Cumberland RL, Gooding W, et al. Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol Immunother. 2009;58(8):1329-1336.

DOI: 10.1007/s00262-008-0648-5.

Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418-5432.

DOI: 10.3748/wjg.v24.i48.5418.

Hatfield P, Merrick AE, West E, O'Donnell D, Selby P, Vile R, et al. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother. 2008;31(7):620-632.

DOI: 10.1097/CJI.0b013e31818213df.

Callmann CE, Cole LE, Kusmierz CD, Huang Z, Horiuchi D, Mirkin CA. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc Natl Acad Sci U S A. 2020;117(30):17543-17550.

DOI: 10.1073/pnas.2005794117.

Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknæs M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71,1-8.

DOI: 10.1038/oncsis.2013.35.

Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12(11):1539-1546.

DOI: 10.1093/intimm/12.11.1539.

Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol. 2012;3:274-290.

DOI: 10.3389/fimmu.2012.00274.

Pan J, Zhang M, Wang J, Wang Q, Xia D, Sun W, et al. Interferon-gamma is an autocrine mediator for dendritic cell maturation. Immunol Lett. 2004;94(1-2):141-151.

DOI: 10.1016/j.imlet.2004.05.003.

Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, et al. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8(2):2659-2671.

DOI: 10.18632/oncotarget.13736.

Benencia F, Courrèges MC, Coukos G. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells. J Transl Med. 2008;6(1):21-34.

DOI: 10.1186/1479-5876-6-21.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.