Chrysin ameliorates STZ-induced diabetes in rats: possible impact of modulation of TLR4/NF-κβ pathway

Abeer Salama , Gihan F. Asaad , Aya Shaheen


Background and purpose: Growing evidence advocates that upregulation of toll-like receptor 4 (TLR4) has been suggested as a causative influence in the development and complications of diabetes mellitus. We aimed to study the antidiabetic activity of chrysin against streptozotocin (STZ)-induced diabetes via down-regulation of TLR4/nuclear factor (NF-κβ)/heat shock protein 70 (HSP70) pathway as well as modulation of clusters of differentiation 4 (CD4+) in rats.

Experimental approach: Fifty rats were divided into five groups (n = 10). Group I, normal rats received a single intraperitoneal injection of buffer citrate; group II, STZ-induced diabetic rats; groups III-V, diabetic rats received glimepiride (0.5 mg/kg; p.o.) or chrysin (40 and 80 mg/kg; p.o.) respectively, for 10 days. Serum samples were extracted to determine nitric oxide (NO), malondialdehyde (MDA), and reduced glutathione (GSH), insulin, CD4+, TLR4, and NF-κβ. Pancreatic tissue samples were extracted to determine glucose transporter 2 (GLUT2). Part of the pancreas was kept in formalin for pathological studies.

Findings/Results: An elevation in blood glucose, NO, and MDA serum levels and a reduction of pancreatic GLUT2 content, insulin, and GSH serum levels were observed in diabetic rats. STZ injection, also, showed an increase in serum TLR4, NF-κβ, and HSP70 levels and a reduction in serum CD4+ levels with pancreatic cells necrosis. These biochemical and histological changes were reversed in glimepiride and chrysin groups.

Conclusion and implications: The present study proved that chrysin has a potent anti-diabetic effect through the elevation of insulin and GLUT2 levels, the reduction of oxidative stress, and the inflammatory pathways TLR4/NF-κβ/HSP70 with the regulation of CD4+.


CD4+; Chrysin; GLUT2; HSP70; TLR4.

Full Text:



Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature. 2001;414:788-791.

DOI: 1038/414788a.

Cho N, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281.

DOI: 10.1016/j.diabres.2018.02.023.

Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid Med Cell Longev. 2020;2020:1356893,1-36.

DOI: 10.1155/2020/1356893.

Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15(1):131-141.

DOI: 10.1186/s12916-017-0901-x.

Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-546.

PMID: 11829314.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226.

DOI: 10.1007/s00125-007-0886-7.

Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990;13(3):198-208.

DOI: 10.2337/diacare.13.3.198.

Palazzo M, Gariboldi S, Zanobbio L, Selleri S, Dusio GF, Mauro V, et al. Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J Immunol. 2008;181(5):3126-3136.

DOI: 10.4049/jimmunol.181.5.3126.

Efrat S, Leiser M, Wu YJ, Fusco-DeMane D, Emran OA, Surana M, et al. Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci U S A. 1994;91:2051-2055.

DOI: 10.1073/pnas.91.6.2051.

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97.

DOI: 10.1038/nri2921.

Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447(7148):1116-1120.

DOI: 10.1038/nature05894.

Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316-330.

DOI: 10.3389/fimmu.2014.00316.

Bellini S, Barutta F, Mastrocola R, Imperatore L, Bruno G, Gruden G. Heat shock proteins in vascular diabetic complications: review and future perspective. Int J Mol Sci. 2017;18(12):2709-2734.

DOI: 10.3390/ijms18122709.

Morissette M, Litim N, Di Paolo T. Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease. In: Brahmachari G, editor. Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier Science; 2018. pp. 9-61.

DOI: 10.1016/B978-0-12-809593-5.00002-1.

Ramirez-Espinosa JJ, Saldana-Rios J, Garcia-Jimenez S, Villalobos-Molina R, Ávila-Villarreal G, Rodríguez-Ocampo AN, et al. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules. 2017;23(1):67-74.

DOI: 10.3390/molecules23010067.

Elhenawy AA, Salama AAA, Abdel All MM, Alomri AA, Nassar HS. Synthesis, characterization and discovery novel anti-diabetic and anti-hyperlipidemic thiazolidinedione derivatives. Int J Pharm Sci Rev Res. 2015;31(2):23-30.

Minaiyan M, Ghannadi A, Movahedian A, Hakim-Elahi I. Effect of Hordeum vulgare L.(Barley) on blood glucose levels of normal and STZ-induced diabetic rats. Res Pharm Sci. 2014;9(3):173-178.

PMID: 25657786.

Kassem AA, Abd El-Alim SH, Basha M, Salama A. Phospholipid complex enriched micelles: a novel drug delivery approach for promoting the antidiabetic effect of repaglinide. Eur J Pharm Sci. 2017;99:75-84.

DOI: 10.1016/j.ejps.2016.12.005.

Mohamed NA, Zaitone SA, Moustafa YM. Effect of sitagliptin in combination with glimepiride on glycemic control and islet cell diameter/proliferation in a model of type 2 diabetic rats. IOSR J Pharm. 2013;3(9):72-80.

DOI: 10.9790/3013-0309-72-80.

Samarghandian S, Azimi-Nezhad M, Samini F, Farkhondeh T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Can J Physiol Pharmacol. 2016;94(4):388-393.

DOI: 10.1139/cjpp-2014-0412.

Mansour HM, Salama AAA, Abdel-Salam RM, Ahmed NA, Yassen NN, Zaki HF. The anti-inflammatory and anti-fibrotic effects of tadalafil in thioacetamide-induced liver fibrosis in rats. Can J Physiol Pharmacol. 2018;96(12):1308-1317.

DOI: 10.1139/cjpp-2018-0338.

Tipple TE, Rogers LK. Methods for the determination of plasma or tissue glutathione levels. Methods Mol Biol. 2012;889:315-324.

DOI: 10.1007/978-1-61779-867-2_20.

García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar Chem. 2014;162:30-36.

DOI: 10.1016/j.marchem.2014.03.002.

Tukozkan N, Erdamar H, Seven I. Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay. Firat Tip Dergisi. 2006;11(2):88-92.

Salama A, Hegazy R, Hassan A. Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model. PloS One. 2016;11(12):e0168688,1-20.

DOI: 10.1371/journal.pone.0168688.

Salama A, Elmalt H. Aescin ameliorates acute kidney injury induced by potassium dichromate in rat: involvement of TLR 4/TNF-α pathway. Egypt J Chem. 2021;64(4):2067-2074.

DOI: 10.21608/ejchem.2021.57553.3237.

Saleh DO, Jaleel GA, Al-Awdan SW, Hassan A, Asaad GF. Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats. Res Pharm Sci. 2020;15(5):418-428.

DOI: 10.4103/1735-5362.297844.

Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol. 2007;583(Pt 1):9-24.

DOI: 10.1113/jphysiol.2007.135871.

Rahmanto AS, Morgan PE, Hawkins CL, Davies MJ. Cellular effects of peptide and protein hydroperoxides. Free Radic Bio Med. 2010;48(8):1071-1078.

DOI: 10.1016/j.freeradbiomed.2010.01.025.

Goharinia M, Zareei A, Rahimi M, Mirkhani H. Can allopurinol improve retinopathy in diabetic rats? Oxidative stress or uric acid; which one is the culprit? Res Pharm Sci. 2017;12(5):401-408.

DOI: 10.4103/1735-5362.213985.

Najemnikova E, Rodgers CD, Locke M. Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones. 2007;12(4):342-352.

DOI: 10.1379/csc-292.1.

Salama AAA, Ibrahim BMM, Yassin NA, Mahmoud SS, Gamal El-Din AA, Shaffie NA. Regulatory effects of Morus alba aqueous leaf extract in streptozotocin-induced diabetic nephropathy. Der Pharma Chem. 2017;9(1):46-52.

Salama AAA, Yassen NN. A Cytoprotectant effect of Morus alba against streptozotocin-induced diabetic damage in rat brains. Der Pharma Chem. 2017;9(9):24-30.

Hussein RA, Salama AAA, El Naggar ME, Ali GH. Medicinal impact of microalgae collected from high rate algal ponds; phytochemical and pharmacological studies of microalgae and its application in medicated bandages. Biocatal Agric Biotechnol. 2019;20:101237.

DOI: 10.1016/j.bcab.2019.101237.

Amin MM, Asaad GF, Salam RMA, El-Abhar HS, Arbid MS. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectin receptors, tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats. PloS One. 2014;9(2):e89169,1-12.

DOI: 10.1371/journal.pone.0089169.

Wasik AA, Lehtonen S. Glucose transporters in diabetic kidney disease-friends or foes? Front Endocrinol (Lausanne). 2018;9:155-166.

DOI: 10.3389/fendo.2018.00155.

Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, Singh N, Medina-Franco JL, Webstere SP, et al. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11beta-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem. 2010;45(6):2606-2612.

DOI: 10.1016/j.ejmech.2010.02.049.

Nunes KP, de Oliveira AA, Szasz T, Biancardi VC, Webb RC. Blockade of toll-like receptor 4 attenuates erectile dysfunction in diabetic rats. J Sex Med. 2018;15(9):1235-1245.

DOI: 10.1016/j.jsxm.2018.07.005.

Szasz T, Wenceslau CF, Burgess B, Nunes KP, Webb RC. Toll-like receptor 4 activation contributes to diabetic bladder dysfunction in a murine model of type 1 diabetes. Diabetes. 2016;65(12):3754-3764.

DOI: 10.2337/db16-0480.

Noble EG, Shen GX. Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Dis. 2012;2012:836519,1-13.

DOI: 10.1155/2012/836519.

Chen Y, Arrigo AP, Currie RW. Heat shock treatment suppresses angiotensin II-induced activation of NF-kappaB pathway and heart inflammation: a role for IKK depletion by heat shock? Am J Physiol Heart Circ Physiol. 2004;287(3):H1104-H1114.

DOI: 10.1152/ajpheart.00102.2004.

Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, et al. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech. 2015;8(10):1311-1321.

DOI: 10.1242/dmm.019398.

Kim JJ, Choi J, Lee MK, Kang KY, Paik MJ, Jo SK, et al. Immunomodulatory and antidiabetic effects of a new herbal preparation (HemoHIM) on streptozotocin-induced diabetic mice. Evid Based Complement Alternat Med. 2014;2014:461685,1-8.

DOI: 10.1155/2014/461685.

Motta Neto R, Guimaraes SB, Silva SL, Cruz JN, Dias T, Vasconcelos PR. Glutamine or whey-protein supplementation on alloxan-induced diabetic rats. effects on CD4+ and CD8+ lymphocytes. Acta Cir Bras. 2007;22(3):215-229.

DOI: 10.1590/s0102-86502007000300010.

Zhang C, Li J, Hu C, Wang J, Zhang J, Ren Z, et al. Antihyperglycaemic and organic protective effects on pancreas, liver, and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice. Sci Rep. 2017;7(1):10847,1-13.

DOI: 10.1038/s41598-017-11457-w.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.