Artemether-loaded nanostructured lipid carriers: preparation, characterization, and evaluation of in vitro effect on Leishmania major

Vahid Rahnama , Mohammad Hossein Motazedian , Soliman Mohammadi-Samani, Qasem Asgari, Parisa Ghasemiyeh, Meisam Khazaei


Background and purpose: Cutaneous leishmaniasis is a global health problem. The discovery of new and highly efficient anti-leishmanial treatments with lower toxicity is globally needed. The current study was carried out to evaluate the anti-leishmanial effects of artemether (ART) and ART-loaded nanostructured lipid carriers (ART-NLCs) against promastigotes and amastigotes of Leishmania major.

Experimental approach: Solvent diffusion evaporation technique was applied to prepare ART-NLCs. These nanoparticles were characterized using a particle size analyzer (PSA), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The antiparasitic activity on amastigote was assessed in J774 cell culture. The drug cytotoxicity on promastigote and macrophage was assessed using the MTT technique after 24 and 48 h and compared with NLCs, ART, and amphotericin B, as the control agents. The selectivity index was calculated for the agents. 

Findings/Results: The DLS and PSA techniques confirmed that ART-NLCs were homogenous in size with an average diameter of 101 ± 2.0 nm and span index of 0.9. The ART-NLCs significantly heighten the anti-leishmanial activity of ART (P < 0.001). The IC50 values of ART and ART-NLCs on promastigotes after                    24 and 48 h were 76.08, 36.71 and 35.14, 14.81 μg/mL, respectively while they were calculated 53.97, 25.43 and 20.13, 11.92 for amastigotes. Also, ART-NLCs had the lowest cytotoxicity against macrophages. Furthermore, among the agents tested, ART-NLCs had the highest selectivity index.

Conclusion and implications: ART-NLCs had lower cytotoxic effects than ART and amphotericin B, also its selectivity index was significantly higher. Based on the findings of the study, this formulation could be a promising candidate for further research into leishmaniasis treatment.


Artemether; L. major; Leishmaniasis; Nanostructured lipid carriers.

Full Text:



Salimi M, Jesri N, Javanbakht M, Zanjirani Farahani L, Shirzadi MR, Saghafipour A. Spatio-temporal distribution analysis of zoonotic cutaneous leishmaniasis in Qom Province, Iran. J Parasit Dis. 2018;42(4):570-576.

DOI: 10.1007/s12639-018-1036-5.

Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951-970.

DOI: 10.1016/S0140-6736(18)31204-2.

Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Res. 2017;6:750-764.

DOI: 10.12688/f1000research.11120.1

Gradoni L. A Brief Introduction to Leishmaniasis Epidemiology. In: Bruschi F, Gradoni L. editors. The Leishmaniases: Old Neglected Tropical Diseases: Springer; 2018. pp. 1-13.

DOI: 10.1007/978-3-319-72386-0_1.

Hussain M, Munir S, Khan TA, Khan A, Ayaz S, Jamal MA, et al. Epidemiology of cutaneous leishmaniasis outbreak, Waziristan, Pakistan. Emerg Infect Dis. 2018;24(1):159-161.

DOI: 10.3201/eid2401.170358.

Farash BRH, Shamsian SAA, Mohajery M, Fata A, Sadabadi F, Berenji F, et al. Changes in the epidemiology of cutaneous leishmaniasis in northeastern Iran. Turkiye Parazitol Derg. 2020;44(1):52-57.

DOI: 10.4274/tpd.galenos.2019.6137.

Cotton JA. The expanding world of human leishmaniasis. Trends Parasitol. 2017;33(5):341-344.

DOI: 10.1016/

Barazesh A, Motazedian MH, Sattarahmady N, Morowvat MH, Rashidi S. Preparation of meglumine antimonate loaded albumin nanoparticles and evaluation of its anti-leishmanial activity: an in vitro assay. J Parasit Dis. 2018;42(3):416-422.

DOI: 10.1007/s12639-018-1018-7.

Esboei BR, Mohebali M, Mousavi P, Fakhar M, Akhoundi B. Potent antileishmanial activity of chitosan against Iranian strain of Leishmania major (MRHO/IR/75/ER): in vitro and in vivo assay. J Vector Borne Dis. 2018;55(2):111-115.

DOI: 10.4103/0972-9062.242557.

Raeisi M, Mirkarimi K, Jannat B, Rahimi Esboei B, Pagheh AS, Mehrbakhsh Z, et al. In vitro effect of some medicinal plants on Leishmania major strain MRHO/IR/75/ER. Med Lab J. 2020;14(4):46-52.

DOI: 10.29252/mlj.14.4.46.

de Oliveira LFG, Pereira BAS, Gilbert B, Corrêa AL, Rocha L, Alves CR. Natural products and phytotherapy: an innovative perspective in leishmaniasis treatment. Phytochem Rev. 2017;16(2):219-233.

DOI: 10.1007/s11101-016-9471-3.

Avery MA, Muraleedharan KM, Desai PV, Bandyopadhyaya AK, Furtado MM, Tekwani BL. Structure-activity relationships of the antimalarial agent artemisinin. 8. design, synthesis, and CoMFA studies toward the development of artemisinin-based drugs against leishmaniasis and malaria. J Med Chem. 2003;46(20):4244-4258.

DOI: 10.1021/jm030181q.

Slezakova S, Ruda-Kucerova J. Anticancer activity of artemisinin and its derivatives. Anticancer Res. 2017;37(11):5995-6003.

DOI: 10.21873/anticanres.12046.

Want MY, Islammudin M, Chouhan G, Ozbak HA, Hemeg HA, Chattopadhyay AP, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine. 2017;12:2189-2204.

DOI: 10.2147/IJN.S106548.

Want MY, Islamuddin M, Chouhan G, Ozbak HA, Hemeg HA, Dasgupta AK, et al. Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf B Biointerfaces. 2015;130:215-221.

DOI: 10.1016/j.colsurfb.2015.04.013.

Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303.

DOI: 10.4103/1735-5362.235156.

Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des Dev Ther. 2020;14:3271-3289.

DOI: 10.2147/DDDT.S264648.

Mohammadi-Samani S, Montaseri H, Jamshidnejad M. Preparation and evaluation of cyproterone acetate liposome for topical drug delivery. Iran J Pharm Sci. 2009;5(4):199-204.

Ghasemiyeh P, Azadi A, Daneshamouz S, Heidari R, Azarpira N, Mohammadi-Samani S. Cyproterone acetate-loaded nanostructured lipid carriers: effect of particle size on skin penetration and follicular targeting. Pharm Dev Technol. 2019;24(7):812-823.

DOI: 10.1080/10837450.2019.1596133.

Ghasemiyeh P, Azadi A, Daneshamouz S, Samani SM. Cyproterone acetate-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): preparation and optimization. Trends Pharmacol Sci. 2017;3(4):275-286.

DOI: 10.1111/tips.v3i4.158.

Mokarizadeh M, Kafil HS, Ghanbarzadeh S, Alizadeh A, Hamishehkar H. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Res Pharm Sci. 2017;12(5):409-415.

DOI: 10.4103/1735-5362.213986.

Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res Pharm Sci. 2015;10(1):17-33.

PMID: 26430454.

Mirhoseini M, Gatabi ZR, Saeedi M, Morteza-Semnani K, Amiri FT, Kelidari HR, et al. Protective effects of melatonin solid lipid nanoparticles on testis histology after testicular trauma in rats. Res Pharm Sci. 2019;14(3):201-208.

DOI: 10.4103/1735-5362.258486.

Ghasemiyeh P, Mohammadi-Samani S. Hydrogels as drug delivery systems; Pros and Cons. Trends Pharmacol Sci. 2019;5(1):7-24.

DOI: 10.30476/tips.2019.81604.1002.

Valadares DG, Duarte MC, Oliveira JS, Chávez-Fumagalli MA, Martins VT, Costa LE, et al. Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitol Int. 2011;60(4):357-363.

DOI: 10.1016/j.parint.2011.06.001.

Chabra A, Rahimi-Esboei B, Habibi E, Monadi T, Azadbakht M, Elmi T, et al. Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology. 2019;146(9):1188-1198.

DOI: 10.1017/s0031182019000325.

Shokri A, Saeedi M, Fakhar M, Morteza-Semnani K, Keighobadi M, Teshnizi SH, et al. Antileishmanial activity of Lavandula angustifolia and Rosmarinus officinalis essential oils and nano-emulsions on Leishmania major (MRHO/IR/75/ER). Iran J Parasitol. 2017;12(4):622-631.

PMID: 29317888.

Esu EB, Effa EE, Opie ON, Meremikwu MM. Artemether for severe malaria. Cochrane Database Syst Rev. 2019;6(6):CD010678,1-85.

DOI: 10.1002/14651858.CD010678.pub3.

van Hensbroek MB, Onyiorah E, Jaffar S, Schneider G, Palmer A, Frenkel J, et al. A trial of artemether or quinine in children with cerebral malaria. N Engl J Med. 1996;335(2):69-75.

DOI: 10.1056/nejm199607113350201.

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373-2387.

DOI: 10.1007/s11095-016-1958-5.

Ebrahimisadr P, Ghaffarifar F, Hassan ZM. In-vitro evaluation of antileishmanial activity and toxicity of artemether with focus on its apoptotic effect. Iran J Pharm Res. 2013;12(4):903-909.

PMID: 24523770.

Lala RR, Shaikh AB. Artemether loaded liposomes for enhanced intestinal permeability: formulation development and evaluation. World J Pharm Pharm Sci. 2017;6(4):1596-1608.

DOI: 10.20959/wjpps20174-8953.

Riaz A, Ahmed N, Khan MI, Haq IU, ur Rehman A, Khan GM. Formulation of topical NLCs to target macrophages for cutaneous leishmaniasis. J Drug Deliv Sci Technol. 2019;54:101232.

DOI: 10.1016/j.jddst.2019.101232.

Nordin N, Yeap SK, Zamberi NR, Abu N, Mohamad NE, Rahman HS, et al. Characterization and toxicity of citral incorporated with nanostructured lipid carrier. PeerJ. 2018;6:e3916,1-19.

DOI: 10.7717/peerj.3916.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.