Anti-angiogenic peptides application in cancer therapy; a review

Alireza Shoari , Farnaz Khodabakhsh , Reza Ahangari Cohan , Morteza Salimian, Elmira Karami


Cancer is a disease advanced via surplus angiogenesis. The development of new anti-angiogenic therapeutic agents with more efficacy and fewer side effects is still quite necessary. Conventional therapies saving the life of many cancer patients but due to drug resistance and lack of specificity utilizing these methods is faced with limits. Recently, new therapeutic agents have been developed and used to treat cancers such as scaffold proteins, monoclonal antibodies, tyrosine kinase inhibitors, and peptides. In antiangiogenic drug development, anti-angiogenic peptides design is a significant aim. Peptides have developed as substantial therapeutics that are being carefully investigated in angiogenesis-dependent diseases because of their high penetrating rate into the cancer cells, high specificity, and low toxicity. In this review, we focus on anti-angiogenic peptides in the field of cancer therapy that are designed, screened, or derived from nanobodies, mimotopes, phage displays, and natural resources.


Keywords: Angiogenesis; Cancer; Nanobodies; Natural resource; Peptide; Phage display.

Full Text:



Ramadhani AH, Ahkam AH, Suharto AR, Jatmiko YD, Tsuboi H, Rifa’i M. Suppression of hypoxia and inflammatory pathways by Phyllanthus niruri extract inhibits angiogenesis in DMBA-induced breast cancer mice. Res Pharm Sci. 2021;16(2):217-226.

DOI: 10.4103/1735-5362.310528.

Figg WD, Folkman J. Angiogenesis: An Integrative Approach from Science to Medicine. 1st ed. Springer US; 2008. pp. 1-14.

DOI: 10.1007/978-0-387-71518-6.

Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932-936.

DOI: 10.1038/nature04478.

Vicari D, Foy KC, Liotta EM, Kaumaya PTP. Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways. J Biol Chem. 2011;286(15):13612-13625.

DOI: 10.1074/jbc.M110.216812.

Bhutia SK, Maiti TK. Targeting tumors with peptides from natural sources. Trends Biotechnol. 2008;26(4):210-217.

DOI: 10.1016/j.tibtech.2008.01.002.

Saladin PM, Zhang BD, Reichert JM. Current trends in the clinical development of peptide therapeutics. IDrugs. 2009;12(12):779-784.

PMID: 19943221.

Pourjafar M, Samadi P, Khoshinani HM, Saidijam M. Are mimotope vaccines a good alternative to monoclonal antibodies? Immunotherapy. 2019;11(9):795-800.

DOI: 10.2217/imt-2018-0213.

Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017;24(1):21-35.

DOI: 10.1186/s12929-017-0328-x.

Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794-3804.

DOI: 10.2174/092986712801661004.

McGregor DP. Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol. 2008;8(5):616-619.

DOI: 10.1016/j.coph.2008.06.002.

Blanco‐Míguez A, Gutiérrez‐Jácome A, Pérez‐Pérez M, Pérez‐Rodríguez G, Catalán‐García S, Fdez‐Riverola F, et al. From amino acid sequence to bioactivity: the biomedical potential of antitumor peptides. Protein Sci. 2016;25(6):1084-1095.

DOI: 10.1002/pro.2927.

Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14-21.

PMID: 22896759.

Oliner J, Min H, Leal JA, Yu D, Rao S, You E, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell. 2004;6(5):507-516.

DOI: 10.1016/j.ccr.2004.09.030.

Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45:2935-2940.

DOI: 10.1007/s11033-018-4427-x.

Karami E, Sabatier JM, Behdani M, Irani S, Kazemi-Lomedasht F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J Enzyme Inhib Med Chem. 2020;35(1):1233-1239.

DOI: 10.1080/14756366.2020.1758690.

Knittelfelder R, Riemer AB, Jensen-Jarolim E. Mimotope vaccination-from allergy to cancer. Expert Opin Biol Ther. 2009;9(4):493-506.

DOI: 10.1517/14712590902870386.

Witsch EJ, Mahlknecht G, Wakim J, Sertchook R, Bublil E, Yarden Y, et al. Generation and characterization of peptide mimotopes specific for anti ErbB-2 monoclonal antibodies. Int Immunol. 2011;23(6):391-403.

DOI: 10.1093/intimm/dxr028.

Leung NYH, Wai CYY, Ho MHK, Liu R, Lam KS, Wang JJ, et al. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries. Cell Mol Immunol. 2017;14(3):308-318.

DOI: 10.1038/cmi.2015.83.

Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, et al. Phage display as a promising approach for vaccine development. J Biomed Sci. 2016;23:66-83.

DOI: 10.1186/s12929-016-0285-9.

Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405-414.

DOI: 10.1016/j.jbi.2014.11.003.

Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1-3):178-183.

DOI: 10.1016/j.vetimm.2008.10.299.

Brämswig KH, Knittelfelder R, Gruber S, Untersmayr E, Riemer AB, Szalai K, et al. Immunization with mimotopes prevents growth of carcinoembryonic antigen-positive tumors in BALB/c mice. Clin Cancer Res. 2007;13(21):6501-6508.

DOI: 10.1158/1078-0432.CCR-07-0692.

Pourhashem Z, Mehrpouya M, Yardehnavi N, Eslamparast A, Kazemi-Lomedasht F. An in-silico approach to find a peptidomimetic targeting extracellular domain of HER3 from a HER3 Nanobody. Comput Biol Chem. 2017;68:39-42.

DOI: 10.1016/j.compbiolchem.2017.02.001.

Yang L, Yuan H, Yu Y, Yu N, Ling L, Niu J, et al. Epidermal growth factor receptor mimotope alleviates renal fibrosis in murine unilateral ureteral obstruction model. Clin Immunol. 2019;205:57-64.

DOI: 10.1016/j.clim.2019.05.014.

Javanmardi M, Rasaee M, Modjtahedi H, Asadi GM, Maghami MG. Triple tandem mimotope peptide of epidermal growth factor receptor displaying on the surface of M13 phage induces anti-tumor response in mice tumor model. Iran J Biotech. 2014;12(3):e1017,1-9.

DOI: 10.15171/ijb.1017.

Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714-727.

DOI: 10.1038/nrc1913.

Li W, Ran Y, Li M, Zhang K, Qin X, Xue X, et al. Mimotope vaccination for epitope-specific induction of anti-VEGF antibodies. BMC Biotechnol. 2013;13:77-86.

DOI: 10.1186/1472-6750-13-77.

Linnemann T, Tumenjargal S, Gellrich S, Wiesmüller K, Kaltoft K, Sterry W, et al. Mimotopes for tumor‐specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur J Immunol. 2001;31(1):156-165.

DOI: 10.1002/1521-4141(200101)31:1<156::aid-immu156>;2-p.

Suzuki S, Sakata J, Utsumi F, Sekiya R, Kajiyama H, Shibata K, et al. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncoimmunology. 2016;5(11):e1238542,1-8.

DOI: 10.1080/2162402X.2016.1238542.

Dana N, Javanmard SH, Rafiee L. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line. Res Pharm Sci. 2015;10(2):117-124.

PMID: 26487888.

Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: a wealth of natural sources for pharmaceutical applications. Mar Drugs. 2017;15(4):124-160.

DOI: 10.3390/md15040124.

Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20(1):122-128.

DOI: 10.1016/j.drudis.2014.10.003.

Padhi A, Sengupta M, Sengupta S, Roehm KH, Sonawane A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis. 2014;94(4):363-373.

DOI: 10.1016/

Eteraf-Oskouei T, Shafiee-Khamneh A, Heshmati-Afshar F, Delazar A. Anti-inflammatory and anti-angiogenesis effect of bee pollen methanolic extract using air pouch model of inflammation. Res Pharm Sci. 2020;15(1):66-75.

DOI: 10.4103/1735-5362.278716.

Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-2758.

DOI: 10.1016/j.bmc.2017.09.029.

Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem. 2017;24(17):1874-1891.

DOI: 10.2174/0929867324666170605091546.

Siddiqua A, Khattak K, Nwaz S. Venom proteins; prospects for anticancer therapy. Pak J Biochem Mol Biol. 2019;52(2):15-26.

Światły-Błaszkiewicz A, Mrówczyńska L, Matuszewska E, Lubawy J, Urbański A, Kokot ZJ, et al. The effect of bee venom peptides melittin, tertiapin, and apamin on the human erythrocytes ghosts: a preliminary study. Metabolites. 2020;10(5):191-203.

DOI: 10.3390/metabo10050191.

Koburova KL, Michailova SG, Shkenderov SV. Further investigation on the antiinflammatory properties of adolapin-bee venom polypeptide. Acta Physiol Pharmacol Bulg. 1985;11(2):50-55.

PMID: 2996298.

Chen J, Guan SM, Sun W, Fu H. Melittin, the major pain-producing substance of bee venom. Neurosci Bull. 2016;32(3):265-272.

DOI: 10.1007/s12264-016-0024-y.

Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16-31.

DOI: 10.1016/j.canlet.2017.05.010.

Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget. 2017;8(59):100908-100930.

DOI: 10.18632/oncotarget.21740.

Li B, Lyu P, Xi X, Ge L, Mahadevappa R, Shaw C, et al. Triggering of cancer cell cycle arrest by a novel scorpion venom‐derived peptide-Gonearrestide. J Cell Mol Med. 2018;22(9):4460-4473.

DOI: 10.1111/jcmm.13745.

Sarzaeem A, Zare MA, Moradhaseli S, Morovvati H, Lotfi M. Cytotoxic effect of ICD-85 (venom-derived peptides) on HeLa cancer cell line and normal LK cells using MTT assay. Arch Iran Med. 2012;15(11):696-701.

PMID: 23102247.

Chung MJ. Protein p8 derived from lactic acid bacteria and its use as anti-cancer agent. Google Patents, 2019. Publication No. 20190201481.

Vijayakumar S, Menakha M. Pharmaceutical applications of cyanobacteria-a review. J Acute Med. 2015;5(1):15-23.

DOI: 10.1016/j.jacme.2015.02.004.

Kang HK, Choi MC, Seo CH, Park Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int J Mol Sci. 2018;19(3):919-958.

DOI: 10.3390/ijms19030919.

Tareq FS, Kim JH, Lee MA, Lee HS, Lee YJ, Lee JS, et al. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis. Org Lett. 2012;14(6):1464-1467.

DOI: 10.1021/ol300202z.

Tao Y, Lin Y, She Z, Lin M, Chen P, Zhang J. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer Agents Med Chem. 2015;15(2):258-266.

DOI: 10.2174/1871520614666140825112255.

Braekman JC, Daloze D, Moussiaux B, Riccio R. Jaspamide from the marine sponge jaspis johnstoni. J Nat Prod. 1987;50(5):994-995.

DOI: 10.1021/np50053a048.

Odaka C, Sanders ML, Crews P. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol. 2000;7(6):947-952.

DOI: 10.1128/cdli.7.6.947-952.2000.

Garcia-Rocha M, Bonay P, Avila J. The antitumoral compound Kahalalide F acts on cell lysosomes. Cancer Lett. 1996;99(1):43-50.

DOI: 10.1016/0304-3835(95)04036-6.

Suárez Y, González L, Cuadrado A, Berciano M, Lafarga M, Muñoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther. 2003;2(9):863-872.

PMID: 14555705.

Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, Wallace JC, et al. The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis: the solution structure of aurein 1.2. Eur J Biochem. 2000;267(17):5330-5341.

DOI: 10.1046/j.1432-1327.2000.01536.x.

Fang XY, Chen W, Fan JT, Song R, Wang L, Gu YH, et al. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1-AKT interaction. Toxicol Appl Pharmacol. 2013;267(1):95-103.

DOI: 10.1016/j.taap.2012.12.010.

Hernandez-Ledesma B, Hsieh CC, Ben O. Lunasin, a novel seed peptide for cancer prevention. Peptides. 2009;30(2):426-430.

DOI: 10.1016/j.peptides.2008.11.002.

Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377-380.

DOI: 10.1126/science.279.5349.377.

Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380(6572):364-366.

DOI: 10.1038/380364a0.

Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkilä P, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol. 1999;17(8):768-774.

DOI: 10.1038/11703.

Lu G, Zheng M, Zhu Y, Sha M, Wu Y, Han X. Selection of peptide inhibitor to matrix metalloproteinase-2 using phage display and its effects on pancreatic cancer cell lines PANC-1 and CFPAC-1. Int J Biol Sci. 2012;8(5):650-662.

DOI: 10.7150/ijbs.3897.

Björklund M, Heikkilä P, Koivunen E. Peptide inhibition of catalytic and noncatalytic activities of matrix metalloproteinase-9 blocks tumor cell migration and invasion. J Biol Chem. 2004;279(28):29589-29597.

DOI: 10.1074/jbc.M401601200.

Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, et al. Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A. 2002;99(3):1527-1531.

DOI: 10.1073/pnas.241655998.

Li ZJ, Wu WKK, Ng SSM, Yu L, Li HT, Wong CCM, et al. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J Control release. 2010;148(3):292-302.

DOI: 10.1016/j.jconrel.2010.09.015.

Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A. 2002;99(4):2252-2257.

DOI: 10.1073/pnas.251687998.

Langel Ü, Ruoslahti E, Myrberg H, Mäe M, Zhang L. Chimeric constructs between cancer-homing peptides and cell-penetrating peptides coupled to anticancer drugs and/or diagnostic agent/agents. Google Patents, 2010. Publication No. WO2007108749A8.

Boger DL, Goldberg J, Silletti S, Kessler T, Cheresh DA. Identification of a novel class of small-molecule antiangiogenic agents through the screening of combinatorial libraries which function by inhibiting the binding and localization of proteinase MMP2 to integrin αVβ3. J Am Chem Soc. 2001;123(7):1280-1288.

DOI: 10.1021/ja003579+.

Takahashi S. Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull. 2011;34(12):1785-1788.

DOI: 10.1248/bpb.34.1785.

Binétruy‐Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)‐mediated angiogenesis. EMBO J. 2000;19(7):1525-1533.

DOI: 10.1093/emboj/19.7.1525.

An P, Lei H, Zhang J, Song S, He L, Jin G, et al. Suppression of tumor growth and metastasis by a VEGFR‐1 antagonizing peptide identified from a phage display library. Int J Cancer. 2004;111(2):165-173.

DOI: 10.1002/ijc.20214.

Hamzeh-Mivehroud M, Dastmalchi S. Identification of new peptide ligands for epidermal growth factor receptor using phage display technology. Res Pharm Sci. 2012;7(5):S452.

Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722-727.

PMID: 10676659.

Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A. Enhancement of tumor necrosis factor α antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol. 2000;18(11):1185-1190.

DOI: 10.1038/81183.

Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A. Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-α. Clin Cancer Res. 2006;12(1):175-182.

DOI: 10.1158/1078-0432.CCR-05-1147.

Hui X, Han Y, Liang S, Liu Z, Liu J, Hong L, et al. Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. J Control Release. 2008;131(2):86-93.

DOI: 10.1016/j.jconrel.2008.07.024.

Mueller J, Gaertner FC, Blechert B, Janssen KP, Essler M. Targeting of tumor blood vessels: a phage-displayed tumor-homing peptide specifically binds to matrix metalloproteinase-2-processed collagen IV and blocks angiogenesis in vivo. Mol Cancer Res. 2009;7(7):1078-1085.

DOI: 10.1158/1541-7786.MCR-08-0538.

Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16(6):510-520.

DOI: 10.1016/j.ccr.2009.10.013.

Lee TY, Lin CT, Kuo SY, Chang DK, Wu HC. Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res. 2007;67(22):10958-10965.

DOI: 10.1158/0008-5472.

Marchiò S, Lahdenranta J, Schlingemann RO, Valdembri D, Wesseling P, Arap MA, et al. Aminopeptidase A is a functional target in angiogenic blood vessels. Cancer Cell. 2004;5(2):151-162.

DOI: 10.1016/s1535-6108(04)00025-x.

Iwamoto Y, Robey FA, Graf J, Sasaki M, Kleinman HK, Yamada Y, et al. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science. 1987;238(4830):1132-1134.

DOI: 10.1126/science.2961059.

Sakamoto N, Iwahana M, Tanaka NG, Osada Y. Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 1991;51(3):903-906.

PMID: 1703042.

Hariharan S, Gustafson D, Holden S, McConkey D, Davis D, Morrow M, et al. Assessment of the biological and pharmacological effects of the ανβ3 and ανβ5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann Oncol. 2007;18(8):1400-1407.

DOI: 10.1093/annonc/mdm140.

Noy A, Scadden DT, Lee J, Dezube BJ, Aboulafia D, Tulpule A, et al. Angiogenesis inhibitor IM862 is ineffective against AIDS-Kaposi’s sarcoma in a phase III trial, but demonstrates sustained, potent effect of highly active antiretroviral therapy: from the AIDS malignancy consortium and IM862 study team. J Clin Oncol. 2005;23(5):990-998.

DOI: 10.1200/JCO.2005.11.043.

Letsch M, Schally AV, Busto R, Bajo AM, Varga JL. Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and-independent prostate cancers. Proc Natl Acad Sci U S A. 2003;100(3):1250-1255.

DOI: 10.1073/pnas.0337496100.

Nasarre C, Roth M, Jacob L, Roth L, Koncina E, Thien A, et al. Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene. 2010;29(16):2381-2392.

DOI: 10.1038/onc.2010.9.

Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, et al. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther. 2006;5(9):2271-2280.

DOI: 10.1158/1535-7163.MCT-06-0100.

Cianfrocca ME, Kimmel KA, Gallo J, Cardoso T, Brown MM, Hudes G, et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer. 2006;94(11):1621-1626.

DOI: 10.1038/sj.bjc.6603171.

Ellert-Miklaszewska A, Poleszak K, Kaminska B. Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem. 2017;9(2):199-221.

DOI: 10.4155/fmc-2016-0189.

Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, et al. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem. 2011;286(38):33167-33177.

DOI: 10.1074/jbc.M111.256644.

Ingangi V, Bifulco K, Yousif AM, Ragone C, Motti ML, Rea D, et al. The urokinase receptor-derived cyclic peptide [SRSRY] suppresses neovascularization and intravasation of osteosarcoma and chondrosarcoma cells. Oncotarget. 2016;7(34):54474-54487.

DOI: 10.18632/oncotarget.9976.

Finlayson M. Modulation of CD44 activity by A6-peptide. Front Immunol. 2015;6:135-142.

DOI: 10.3389/fimmu.2015.00135.

Berkenblit A, Matulonis UA, Kroener JF, Dezube BJ, Lam GN, Cuasay LC, et al. Å6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: a phase I trial. Gynecol Oncol. 2005;99(1):50-57.

DOI: 10.1016/j.ygyno.2005.05.023.

Gold MA, Brady WE, Lankes HA, Rose PG, Kelley JL, De Geest K, et al. A phase II study of a urokinase-derived peptide (A6) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2012;125(3):635-639.

DOI: 10.1016/j.ygyno.2012.03.023.

Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev. 2002;13(2):143-154.

DOI: 10.1016/s1359-6101(01)00033-8.

Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res. 2009;155(2):231-236.

DOI: 10.1016/j.jss.2008.06.044.

Hotte S, Hirte H, Iacobucci A, Wong D, Cantin L, Korz W, et al. Phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers. Mol Cancer Ther. 2007;6(11):A153.

Goodarzi A, Yari F, Mohammadipour M, Deyhim MR, Timori Naghadeh H. Capability of platelet factor 4 to induce apoptosis in the cancerous cell lines in vitro. Int J Med Lab. 2018;5(3):195-207.

Valdivia-Silva J, Medina-Tamayo J, Garcia-Zepeda EA. Chemokine-derived peptides: novel antimicrobial and antineoplasic agents. Int J Mol Sci. 2015;16(6):12958-12985.

DOI: 10.3390/ijms160612958.

Vandercappellen J, Liekens S, Bronckaers A, Noppen S, Ronsse I, Dillen C, et al. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. Mol Cancer Res. 2010;8(3):322-334.

DOI: 10.1158/1541-7786.MCR-09-0176.

Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AEI, Balkwill FR. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 2003;63(23):8360-8365.

PMID: 14678997.

Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets. 2016;20(9):1055-1073.

DOI: 10.1517/14728222.2016.1164694.

Kahán Z, Sun B, Schally AV, Arencibia JM, Cai R, Groot K, et al. Inhibition of growth of MDA‐MB‐468 estrogen‐independent human breast carcinoma by bombesin/gastrin‐releasing peptide antagonists RC‐3095 and RC‐3940‐II. Cancer. 2000;88(6):1384-1392.

DOI: 10.1002/(sici)1097-0142(20000315)88: 6<1384::aid-cncr16>;2-q.

de Oliveira MS, Cechim G, Braganhol E, Santos DG, Meurer L, de Castro CG, et al. Anti-proliferative effect of the gastrin-release peptide receptor antagonist RC-3095 plus temozolomide in experimental glioblastoma models. J Neurooncol. 2009;93(2):191-201.

DOI: 10.1007/s11060-008-9775-2.

Hruby VJ. Prospects for peptidomimetic drug design. Drug Discov Today. 1997;2(5):165-167.

DOI: 10.1016/S1359-6446(96)20009-1.

Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS. Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol. 2011;12(8):1101-1116.

DOI: 10.2174/138920111796117300.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.