Antidiabetic potential of the isolated fractions from the plants of Rosaceae family in streptozotocin-induced diabetic rats

Gholamreza Bahrami , Babak Izadi, Seyed Shahram Miraghaee , Bahar Mohammadi, Razieh Hatami, Soraya Sajadimajd, Nasim Batooie

Abstract


Background and purpose: Diabetes is a group of multifactorial disorders characterized by chronic-elevated blood glucose levels (hyperglycemia). Natural remedies are used as alternative medications to treat diabetes. Here, we tested the protective effect of the plant extracts of the Rosaceae family on improving insulin secretion and repairing the pancreatic beta cells in diabetic rats.

Experimental approach: The oligosaccharide fraction was isolated from the Rosaceae family of herbs. LC-MS/MS was applied to characterize the isolated fractions. The male Wistar rats were randomly divided into six groups, 10 each, including the control group with no intervention, diabetic rats without treatment, diabetic rats that received the extract of Malus domestica (apple), Cydonia oblonga (quince), Prunus persica (nectarine), and Prunus persica (peach), separately. Rats were monitored for the weight, fasting plasma glucose, and insulin levels. The effect of extracts in streptozotocin (STZ)-induced diabetic rats on the pancreatic islets was evaluated by morphometric analysis.

Findings/Results: LC-MS/MS results indicated a similar mass spectrum of isolated fractions from nectarine and peach with Rosa canina. Oral administration of nectarine and peach extracts to STZ-induced diabetic rats showed restoration of blood glucose levels to normal levels with a concomitant increase in insulin levels. Morphometric analysis of pancreatic sections revealed the increase in number, diameter, volume, and area of the pancreatic islets in the diabetic rats treated with extracts compared to the untreated diabetic rats.

Conclusion and implications: Nectarine and peach extracts’ anti-diabetic properties improved insulin secretion and pancreatic beta-cell function and subsequently led to restoring pancreatic islet mass in STZ-induced diabetic rats.


Keywords


Diabetes; Insulin; Morphometric analysis; Nectarine, Pancreas; Peach; Streptozotocin.

References


Moucheraud C, Lenz C, Latkovic M, Wirtz VJ. The costs of diabetes treatment in low-and middle-income countries: a systematic review. BMJ Glob Health. 2019;4(1):e001258,1-12.

DOI: 10.1136/bmjgh-2018-001258.

Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1):56-64.

DOI: 10.1016/S2213-8587(13)70112-8.

Bai L, Li X, He L, Zheng Y, Lu H, Li J, et al. Antidiabetic potential of flavonoids from traditional Chinese medicine: a review. Am J Chin Med. 2019;47(5):933-957.

DOI: 10.1142/S0192415X19500496.

Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicity of streptozotocin. Res Pharm Sci. 2018;13(4):324-331.

DOI: 10.4103/1735-5362.235159.

Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320-330.

DOI: 10.1016/S2221-1691(12)60032-X.

Müller A, Schott-Ohly P, Dohle C, Gleichmann H. Differential regulation of Th1-type and Th2-type cytokine profiles in pancreatic islets of C57BL/6 and BALB/c mice by multiple low doses of streptozotocin. Immunobiology. 2002;205(1):35-50.

DOI: 10.1078/0171-2985-00109.

Sun N, Yang G, Zhao H, Savelkoul HF, An L. Multidose streptozotocin induction of diabetes in BALB/c mice induces a dominant oxidative macrophage and a conversion of TH1 to TH2 phenotypes during disease progression. Mediators Inflamm. 2005;2005(4):202-209.

DOI: 10.1155/MI.2005.202.

Fattahi A, Niyazi F, Shahbazi B, Farzaei MH, Bahrami G. Antidiabetic mechanisms of Rosa canina fruits. An in vitro evaluation. J Evid Based Complementary Altern Med. 2017;22(1):127-133.

DOI: 10.1177/2156587216655263.

Bahrami G. Herbal extract composition for the treatment of diabetes and a method of extracting the same. Google Patents, 2016. No. US20140256673A1. https://patents.google.com/patent/US20140256673A1/en.

Rahimi M, Sajadimajd S, Mahdiand Z, Hemmati M, Malekkhatabi P, Bahrami G, et al. Characterization and anti-diabetic effects of the oligosaccharide fraction isolated from Rosa canina in STZ-induced diabetic rats. Carbohydr Res. 2020;489:107927.

DOI: 10.1016/j.carres.2020.107927.

Bahrami G, Miraghaee SS, Mohammadi B, Bahrami MT, Taheripak G, Keshavarzi S, et al. Molecular mechanism of the anti-diabetic activity of an identified oligosaccharide from Rosa canina. Res Pharm Sci. 2020;15(1):36-47.

DOI: 10.4103/1735-5362.278713.

Sajadimajd S, Bahrami G, Mohammadi B, Nouri Z, Farzaei MH, Chen JT. Protective effect of the isolated oligosaccharide from Rosa canina in STZ‐treated cells through modulation of the autophagy pathway. J Food Biochem. 2020;44(10):e13404.

DOI: 10.1111/jfbc.13404.

Bahrami G, Sajadimajd S, Mohammadi B, Hatami R, Miraghaee S, Keshavarzi S, et al. Anti-diabetic effect of a novel oligosaccharide isolated from Rosa canina via modulation of DNA methylation in Streptozotocin-diabetic rats. Daru. 2020;28(2):581-590.

DOI: 10.1007/s40199-020-00363-8.

Castroviejo S. Flora Iberica. Madrid: Real Jardín Botánico. CSIC2012; 1986. pp. 1-8, 10-15, 17-18, 21.

Garcia-Oliveira P, Fraga-Corral M, Pereira A, Lourenço-Lopes C, Jimenez-Lopez C, Prieto M, et al. Scientific basis for the industrialization of traditionally used plants of the Rosaceae family. Food Chem. 2020;330:127197.

DOI: 10.1016/j.foodchem.2020.127197.

Bae H, Kim HJ, Shin M, Lee H, Yin CS, Ra J, et al. Inhibitory effect of Agrimoniae Herba on lipopolysaccharide-induced nitric oxide and proinflammatory cytokine production in BV2 microglial cells. Neurol Res. 2010;32(Supp1):53-57.

DOI: 10.1179/016164109X12537002794002.

Yoon SJ, Koh EJ, Kim CS, Zee OP, Kwak JH, Jeong WJ, et al. Agrimonia eupatoria protects against chronic ethanol-induced liver injury in rats. Food Chem Toxicol. 2012;50(7):2335-2341.

DOI: 10.1016/j.fct.2012.04.005.

Tsirigotis-Maniecka M, Pawlaczyk-Graja I, Ziewiecki R, Balicki S, Matulová M, Capek P, et al. The polyphenolic-polysaccharide complex of Agrimonia eupatoria L. as an indirect thrombin inhibitor-isolation and chemical characterization. Int J Biol Macromol. 2019;125:124-132.

DOI: 10.1016/j.ijbiomac.2018.12.017.

Ad’hiah AH, Al-Bederi ON, Al-Sammarrae KW. Cytotoxic effects of Agrimonia eupatoria L. against cancer cell lines in vitro. J Assoc Arab Univ Basic Appl Sci. 2013;14(1):87-92.

DOI: 10.1016/j.jaubas.2013.01.003.

Al-Snafi AE. The pharmacological and therapeutic importance of Agrimonia eupatoria-a review. Asian J Pharm Sci Technol. 2015;5(2):112-117.

Vianna R, Brault A, Martineau LC, Couture R, Arnason JT, Haddad PS. in vivo anti-diabetic activity of the ethanolic crude extract of Sorbus decora CK Schneid. (Rosacea): a medicinal plant used by Canadian James Bay Cree nations to treat symptoms related to diabetes. Evid Based Complement Alternat Med. 2011;2011:237941,1-7.

DOI: 10.1093/ecam/nep158.

Spoor DC, Martineau LC, Leduc C, Benhaddou-Andaloussi A, Meddah B, Harris C, et al. Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential. Can J Physiol Pharmacol. 2006;84(8-9):847-858.

DOI: 10.1139/y06-018.

Orhan DD, Hartevioğlu A, Küpeli E, Yesilada E. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. fruits. J Ethnopharmacol. 2007;112(2):394-400.

DOI: 10.1016/j.jep.2007.03.029.

Uno K, Kosuna K, Sun B, Fujii H, Wakame K, Chikumaru S, et al. Active hexose correlated compound (AHCC) improves immunological parameters and performance status of patients with solid tumors. Biotherapy-Tokyo. 2000;14(3):303-307.

Kumosani TA, Balamash KS, Ghashlan H, Mohamed YA, Baothman OA, Zeyadi M, et al. Potential antioxidant and anti-proliferative activities of biologically active marine algae extracts. J Pharm Res Int. 2017;19(6):1-7.

Ribeiro DML, Carvalho Júnior AR, de Macedo GHR, Chagas VL, Silva LdS, Cutrim BdS, et al. Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules. 2019;10(1):63-78.

DOI: 10.3390/biom10010063.

Wasser SP. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. Int J Med Mushrooms. 2017;19(4):279-317.

DOI: 10.1615/IntJMedMushrooms.v19.i4.10.

Neyrinck AM, Hiel S, Bouzin C, Campayo VG, Cani PD, Bindels LB, et al. Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. Nutr Diabetes. 2018;8(1):15-19.

DOI: 10.1038/s41387-018-0019-z.

Zhang C, Huang M, Hong R, Chen H. Preparation of a Momordica charantia L. polysaccharide‑chromium (III) complex and its anti-hyperglycemic activity in mice with streptozotocin-induced diabetes. Int J Biol Macromol. 2019;122:619-627.

DOI: 10.1016/j.ijbiomac.2018.10.200.

Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, et al. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother. 2017;95:1669-1677.

DOI: 10.1016/j.biopha.2017.09.104.

Zhang C, Li J, Hu C, Wang J, Zhang J, Ren Z, et al. Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice. Sci Rep. 2017;7(1):10847,1-13.

DOI: 10.1038/s41598-017-11457-w.

Wang LY, Wang Y, Xu DS, Ruan KF, Feng Y, Wang S. MDG-1, a polysaccharide from Ophiopogon japonicus exerts hypoglycemic effects through the PI3K/Akt pathway in a diabetic KKAy mouse model. J Ethnopharmacol. 2012;143(1):347-354.

DOI: 10.1016/j.jep.2012.06.050.

Zheng D, Zou Y, Cobbina SJ, Wang W, Li Q, Chen Y, et al. Purification, characterization and immunoregulatory activity of a polysaccharide isolated from Hibiscus sabdariffa L. J Sci Food Agric. 2017;97(5):1599-1606.

DOI: 10.1002/jsfa.7908.

Shang HM, Zhou HZ, Li R, Duan MY, Wu HX, Lou YJ. Extraction optimization and influences of drying methods on antioxidant activities of polysaccharide from cup plant (Silphium perfoliatum L.). PLoS One. 2017;12(8):e0183001,1-18.

DOI: 10.1371/journal.pone.0183001.

Zhu W, Xue X, Zhang Z. Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum multiflorum. Int J Biol Macromol. 2016;91:132-142.

DOI: 10.1016/j.ijbiomac.2016.05.061.

Sharma G, Kumar S, Sharma M, Upadhyay N, Ahmed Z, Mahindroo N. Anti-diabetic, anti-oxidant and anti-adipogenic potential of quercetin rich ethyl acetate fraction of Prunus persica. Pharmacogn J. 2018;10(3):463-469.

DOI:10.5530/pj.2018.3.76.

Tang D, Xie L, Xin X, Aisa H. Anti-diabetic action of Cydonia oblonga seed extract: improvement of glucose metabolism via activation of PI3K/AKT signaling pathway. J Pharmacogn Phytochem. 2016;4(2):7-13.

Patel I, Padse O, Ingole Y. Comparative analysis of antioxidant and antidiabetic activity for apple (Malus domestica), banana (Musa paradisiaca) & kiwi (Actinidia deliciosa). Int J Res Advent Technol. 2015;Special Issue National Conference “ACGT 2015”:28-31.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.