Chimeric antigen receptor‑T cells immunotherapy for targeting breast cancer

Ilnaz Rahimmanesh , Hossein Khanahmad

Abstract


Redirected chimeric antigen receptor (CAR) T-cells can recognize and eradicate cancer cells in a major histocompatibility complex independent manner. Genetic engineering of T cells through CAR expression has yielded great results in the treatment of hematological malignancies compared with solid tumors. There has been a constant effort to enhance the effectiveness of these living drugs, due to their limited success in targeting solid tumors. Poor T cell trafficking, tumor-specific antigen selection, and the immunosuppressive tumor microenvironment are considered as the main barriers in targeting solid tumors by CAR T-cells. Here, we reviewed the current state of CAR T-cell therapy in breast cancer, as the second cancer-related death in women worldwide, as well as some strategies adopted to keep the main limitations of CAR T-cells under control. Also, we summarized various approaches that have been developed to enhance the therapeutic outcomes of this treatment in solid tumors targeting.


Keywords


Adoptive immunotherapy; Breast neoplasms; Cell-based therapy; Chimeric antigen receptor.

References


Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci. 2020;15(2):107-122.

DOI: 10.4103/1735-5362.283811.

Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288-300.

DOI: 10.1001/jama.2018.19323.

Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 2017;17(2):152-163.

DOI: 10.2174/1871520616666160502122724.

Low SK, Zembutsu H, Nakamura Y. Breast cancer: the translation of big genomic data to cancer precision medicine. Cancer Sci. 2018;109(3):497-506.

DOI: 10.1111/cas.13463.

Darzi L, Boshtam M, Shariati L, Kouhpayeh S, Gheibi A, Mirian M, et al. The silencing effect of miR-30a on ITGA4 gene expression in vitro: an approach for gene therapy. Res Pharm Sci. 2017;12(6):456-464.

DOI: 10.4103/1735-5362.217426.

Chan CWH, Law BMH, So WKW, Chow KM, Waye MMY. Novel strategies on personalized medicine for breast cancer treatment: an update. Int J Mol Sci. 2017;18(11):2423.

DOI: 10.3390/ijms18112423.

Newick K, O'Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139-152.

DOI: 10.1146/annurev-med-062315-120245.

Rahimmanesh I, Totonchi M, Khanahmad H. The challenging nature of primary T lymphocytes for transfection: effect of protamine sulfate on the transfection efficiency of chemical transfection reagents. Res Pharm Sci. 2020;15(5):437-446.

DOI: 10.4103/1735-5362.297846.

Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2016;4:92-101.

DOI: 10.1016/j.omtm.2016.12.006.

Chmielewski M, Abken H. TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Adv Cell Gene Ther. 2020; 3:e84-e92.

DOI: 10.1002/acg2.84.

Xie Y, Hu Y, Zhou N, Yao C, Wu L, Liu L, et al. CAR T-cell therapy for triple-negative breast cancer: where we are. Cancer Lett. 2020;491:121-131.

DOI: 10.1016/j.canlet.2020.07.044.

Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology. 2018;7(7):e1440169,1-13.

DOI: 10.1080/2162402X.2018.1440169.

Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014,1-7.

DOI: 10.1038/mto.2016.14.

Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res. 2017;5:22-27.

DOI: 10.1186/s40364-017-0102-y.

Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059-1070.

DOI: 10.1007/s10875-012-9689-9.

Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol. 2019;12(1):128-137.

DOI: 10.1186/s13045-019-0813-7.

Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest. 2016;126(8):3036-3052.

DOI: 10.1172/JCI83416.

Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11(1):132-140.

DOI: 10.1186/s13045-018-0677-2.

Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of t cell responses. Cell. 2018;173(6):1426-1438.e11.

DOI: 10.1016/j.cell.2018.03.038.

Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392-6402.

DOI: 10.1182/blood-2009-03-209650.

Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother. 2010;33(8):780-788.

DOI: 10.1097/CJI.0b013e3181ee6675.

Guedan S, Alemany R. CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge. Front Immunol. 2018;9:2460-2469.

DOI: 10.3389/fimmu.2018.02460.

Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med. 2015;21(5):524-529.

DOI: 10.1038/nm.3833.

Priceman SJ, Tilakawardane D, Jeang B, Aguilar B, Murad JP, Park AK, et al. Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2(+) breast cancer metastasis to the brain. Clin Cancer Res. 2018;24(1):95-105.

DOI: 10.1158/1078-0432.CCR-17-2041.

Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940-961.

DOI: 10.3389/fimmu.2020.00940.

Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ, Guedan S. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. Front Immunol. 2020;11:1109-1125.

DOI: 10.3389/fimmu.2020.01109.

Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257(1):83-90.

DOI: 10.1111/imr.12125.

Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest. 2017;127(3): 929-941.

DOI: 10.1172/JCI89455.

Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1):120-145.

DOI: 10.1186/s12943-020-01238-x.

Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975,1-10.

DOI: 10.1016/j.ebiom.2020.102975.

Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, et al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol. 2017;8:533-549.

DOI: 10.3389/fimmu.2017.00533.

Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood. 2002;100(4):1265-1273.

PMID: 12149207.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.