Thymoquinone abrogates methamphetamine-induced striatal neurotoxicity and hyperlocomotor activity in mice

Ali Roohbakhsh , Mohammad Moshiri, Azam Salehi Kakhki, Milad Iranshahy, Fatemeh Amin, Leila Etemad


Background and purpose: Methamphetamine (METH) abuse has devastating consequences on the nervous system. There are limited therapy choices in METH abuse with reduced effectiveness and elevated recurrence rates. Thymoquinone (TQ), the most bioactive constituent of Nigella sativa seeds exerts neuroprotective effects mainly via antioxidant properties. This study aimed to evaluate the effect of TQ against METH-induced striatal neurotoxicity and hyperlocomotor activity in mice.

Experimental approach: Our groups of animals received METH (10 mg/kg) four times a day with 2 h intervals. Normal saline or TQ (5, 10, or 20 mg/kg) was injected intraperitoneally 30 min before METH administration. Control and sham groups received vehicle or TQ, respectively. The rectal temperature and behavioral tests including the open field for locomotor activity and rotarod for motor coordination were evaluated. The level of superoxide dismutase (SOD), as well as pathological changes, were also assessed in the striatum region.

Findings/Results: No significant differences in rectal temperatures were observed among treated groups. Administration of METH increased locomotor activity and did not change motor coordination. TQ                               co-administration with METH significantly reduced the central and total locomotion and the mean latency to fall off the rotarod in a dose-dependent manner compared with the METH group. TQ also alleviated the METH-induced decrease in the activity of SOD.TQ, especially at the high dose, reduced the METH-induced reactive gliosis level.

Conclusion and implications: In conclusion, TQ prevents the enhanced locomotor activity, antioxidant impairment, and morphological striatal damage caused by METH in mice. TQ may be a potential candidate for the treatment of specific METH-induced brain disorders or neurological diseases.




Keywords: Adverse drug effects; Methamphetamine; Nervous system; Nigella sativa; Substance abuse; Thymoquinone.

Full Text:



Rahmati M, Eskandari MR. Cytotoxic effects of methamphetamine in rat hepatocytes. Res Pharm Sci. 2012;7(5):S186.

Bananej A, Völkl-Kernstock S, Lesch O, Walter H, Skala K. No evidence of subgroups found in amphetamine consumers in Iran. Neuropsychiatr. 2018;32(2):69-74.

DOI: 10.1007/s40211-018-0259-0.

Prakash MD, Tangalakis K, Antonipillai J, Stojanovska L, Nurgali K, Apostolopoulos V. Methamphetamine: effects on the brain, gut and immune system. Pharmacol Res. 2017;120:60-67.

DOI: 10.1016/j.phrs.2017.03.009.

Skowronska M, McDonald M, Velichkovska M, Leda AR, Park M, Toborek M. Methamphetamine increases HIV infectivity in neural progenitor cells. J Biol Chem. 2018;293(1):296-311.

DOI: 10.1074/jbc.RA117.000795.

Moshiri M, Roohbakhsh A, Talebi M, Iranshahy M, Etemad L. Role of natural products in mitigation of toxic effects of methamphetamine: a review of in vitro and in vivo studies. Avicenna J Phytomed. 2020;10(4):334-351.

Karila L, Petit A, Cottencin O, Reynaud M. Methamphetamine dependence: consequences and complications. Presse Med. 2010;39(12):1246-1253.

DOI: 10.1016/j.lpm.2010.09.003.

Moshiri M, Rahimi P, Etemad L. Hunting meth mite by cigarette light: a case study. IJMTFM. 2020;10(1):25478,1-2.

DOI: 10.32598/ijmtfm.v10i1.25478.

Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102 Suppl 1:16-32.

DOI: 10.1111/j.1360-0443.2006.01782.x.

Volz TJ, Hanson GR, Fleckenstein AE. The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine‐induced dopaminergic deficits. J Neurochem. 2007;101(4):883-888.

DOI: 10.1111/j.1471-4159.2006.04419.x.

Jakaria M, Cho DY, Ezazul Haque M, Karthivashan G, Kim IS, Ganesan P, et al. Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders. Oxid Med Cell Longev. 2018;2018:1209801,1-17.

DOI: 10.1155/2018/1209801.

Nili-Ahmadabadi A, Alibolandi P, Ranjbar A, Mousavi L, Nili-Ahmadabadi H, Larki-Harchegani A, et al. Thymoquinone attenuates hepatotoxicity and oxidative damage caused by diazinon: an in vivo study. Res Pharm Sci. 2018;13(6):500-508.

DOI: 10.4103/1735-5362.245962.

Rajpar F, Memon S, Goswami P, Rajpar FA. Neuroprotective role of Nigella sativa on methamphetamine induced hippocampal injury in male albino mice. J Liaquat Uni Med Health Sci. 2019;18(2):136-141.

Mohd Adnan LH, Abu Bakar NH, Simbak N, Mohamad N, Ismail R, Ahmad NZ, et al. Thymoquinone: from Nigella sativa to a protective pharmacological compound in managing opioid dependence and amphetamine type stimulant issues. Iran J Basic Med Sci. 2020;23(7):849-852.

DOI: 10.22038/ijbms.2020.41678.9841.

Hosseini-Sharifabad A, Naghibzadeh S, Hajhashemi V. The effect of lead, restraint stress or their co-exposure on the movement disorders incidence in male mice. Res Pharm Sci. 2019;14(4):343-350.

DOI: 10.4103/1735-5362.263558.

Ghadiri A, Etemad L, Moshiri M, Moallem SA, Jafarian AH, Hadizadeh F, et al. Exploring the effect of intravenous lipid emulsion in acute methamphetamine toxicity. Iran J Basic Med Sci. 2017;20(2):138-144.

DOI: 10.22038/ijbms.2017.8236.

Granado N, Ares-Santos S, O'Shea E, Vicario-Abejon C, Colado MI, Moratalla R. Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine. Neurotox Res. 2010;18(1):48-58.

DOI: 10.1007/s12640-009-9106-1.

Kuo CC, Shen H, Harvey BK, Yu SJ, Kopajtic T, Hinkle JJ, et al. Differential modulation of sensitization by overexpression of Mu opioid receptors in nucleus accumbens and ventral tegmental area. Psychopharmacology (Berl). 2016;233(4):661-672.

DOI: 10.1007/s00213-015-4134-4.

Struntz KH, Siegel JA. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice. Behav Brain Res. 2018;348:211-218.

DOI: 10.1016/j.bbr.2018.04.019.

Granado N, Ares-Santos S, Moratalla R. Methamphetamine and Parkinson's disease. Parkinsons Dis. 2013;2013:308052,1-10.

DOI: 10.1155/2013/308052.

Sabol KE, Yancey DM, Speaker HA, Mitchell SL. Methamphetamine and core temperature in the rat: ambient temperature, dose, and the effect of a D2 receptor blocker. Psychopharmacology (Berl). 2013;228(4):551-561.

DOI: 10.1007/s00213-013-3059-z.

Yu S, Zhu L, Shen Q, Bai X, Di X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol. 2015;2015:103969,1-11.

DOI: 10.1155/2015/103969.

Moshiri M, Hosseiniyan SM, Moallem SA, Hadizadeh F, Jafarian AH, Ghadiri A, et al. The effects of vitamin B12 on the brain damages caused by methamphetamine in mice. Iran J Basic Med Sci. 2018;21(4):434-438.

DOI: 10.22038/IJBMS.2018.23362.5897.

Asanuma M, Miyazaki I, Higashi Y, Cadet JL, Ogawa N. Methamphetamine-induced increase in striatal p53 DNA-binding activity is attenuated in Cu,Zn-superoxide dismutase transgenic mice. Neurosci Lett. 2002;325(3):191-194.

DOI: 10.1016/s0304-3940(02)00291-4.

Saeed M, Ghadiri A, Hadizadeh F, Attaranzadeh A, Alavi MS, Etemad L. Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex. Iran J Basic Med Sci. 2018;21(12):1316-1321.

DOI: 10.22038/IJBMS.2018.35368.8427.

Maragos WF, Jakel R, Chesnut D, Pocernich CB, Butterfield DA, St Clair D, et al. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res. 2000;878(1-2):218-222.

DOI: 10.1016/s0006-8993(00)02707-4.

Harold C, Wallace T, Friedman R, Gudelsky G, Yamamoto B. Methamphetamine selectively alters brain glutathione. Eur J Pharmacol. 2000;400(1):99-102.

DOI: 10.1016/s0014-2999(00)00392-7.

Khader M, Eckl PM. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci. 2014;17(12):950-957.

Farkhondeh T, Samarghandian S, Shahri AMP, Samini F. The neuroprotective effects of thymoquinone: a review. Dose Response. 2018;16(2):1559325818761455,1-11.

DOI: 10.1177/1559325818761455.

Md Fauzi NFA, Abu Bakar NH, Mohamad N, Che Mat K, Syed Omar SH, Othman MS, et al. Potential therapeutic effects of thymoquinone on treatment of amphetamine abuse. Asian Pac J Trop Biomed. 2018;8(3):187-188.

DOI: 10.4103/2221-1691.228001.

Jiao D, Liu Y, Li X, Liu J, Zhao M. The role of the GABA system in amphetamine-type stimulant use disorders. Front Cell Neurosci. 2015;9:162-174.

DOI: 10.3389/fncel.2015.00162.

Parvardeh S, Moghimi M. Skeletal muscle relaxant effects of thymoquinone, the major constituent of Nigella sativa. J Med Plants. 2015;14(54):122-133.

Hosseinzadeh H, Parvardeh S, Nasiri Asl M, Sadeghnia HR, Ziaee T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine. 2007;14(9):621-627.

DOI: 10.1016/j.phymed.2006.12.005.

Sedaghat R, Roghani M, Khalili M. Neuroprotective effect of thymoquinone, the Nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. Iran J Pharm Res. 2014;13(1):227-234.

Poorgholam P, Yaghmaei P, Hajebrahimi Z. Thymoquinone recovers learning function in a rat model of Alzheimer's disease. Avicenna J Phytomed. 2018;8(3):188-197.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.