Hepatoprotective effect of kaempferol glycosides isolated from Cedrela odorata L. leaves in albino mice: involvement of Raf/MAPK pathway

Gihan Farag Asaad , Heba Mohammed Ibrahim Abdallah, Hala Shaaban Mohammed, Yousra Ahmed Nomier


Background and purpose: Paracetamol is the most implicated xenobiotic in inducing hepatotoxicity. Our study aimed to determine the impact of some kaempferol glycosides isolated from the leaves of Cedrela odorata L. on paracetamol hepatotoxicity.

Experimental approach: The methanolic extract of dried leaves of C. odorata L. was subjected                                        to the combination of spectroscopic methods (1H and 13CNMR). Six kaempferol glycosides were                            isolated: kaempferol-3-O-b-D-glycopyranoside (astragalin), kaempferol-3-O-b-L-rhamnopyranoside, kaempferol-3-O-b-D-rutinoside, kaempferide-3-O-b-D-rutinoside, kaempferide-3-O-b-Drutinosyl-7-O-b-D-rhamnopyranoside, and kaempferol-3-O-b-D- rutinosyl-7-O-α-D-arabinopyranoside. Fifty-four female Swiss Albino mice were divided randomly into 9 groups including (1) control negative (1 mL/kg saline; IP), (2) control positive (paracetamol 300 mg/kg; IP), (3) silymarin 50 mg/kg (IP). Animals of groups 4-9 were injected with 6 different samples of isolated compounds at 100 mg/kg (IP). One h later, groups 3-9 were injected with paracetamol (300 mg/kg IP). Two h later, tissue samples were taken from all animals to assess nitrotyrosine, c-Jun N-terminal protein kinase (c-JNK), Raf -1kinase, and oxidative stress biomarkers viz. reduced glutathione (GSH) and malondialdehyde (MDA).

Findings/Results: Isolated glycosides had a prominent anti-apoptotic effect via inhibition of c-JNK and Raf-1 kinase. They also exerted a powerful antioxidant effect by modulating the oxidative stress induced by paracetamol via increasing GSH, reducing MDA and nitrotyrosine concentrations compared to positive control. The glycoside (1) showed a better effect than silymarin (standard) in ameliorating the formation of nitrotyrosine, Raf-1 kinase, c-JNK, and GSH.

Conclusion and implication: Kaempferol glycosides isolated for the first time from C. odorata L. leaves exerted antioxidant and antiapoptotic effects via amelioration of oxidative stress and inhibition of Raf/ MAPK pathway.


Keywords: Antioxidant; C. odorata L; Glycosides; Kaempferol; Nitrotyrosine; Paracetamol; Raf/MAPK.

Full Text:



Dkhil MA, Abdel Moneim AE, Hafez TA, Mubaraki MA, Mohamed WF, Thagfan FA, et al. Myristica fragrans kernels prevent paracetamol-induced hepatotoxicity by inducing anti-apoptotic genes and Nrf2/HO-1 pathway. Int J Mol Sci. 2019;20(4):993-1007.

DOI: 10.3390/ijms20040993.

Wei G, Bergquist A, Broomé U, Lindgren S, Wallerstedt S, Almer S, et al. Acute liver failure in Sweden: etiology and outcome. J Intern Med. 2007;262(3):393-401.

DOI: 10.1111/j.1365-2796.2007.01818.x.

Bender RP, Lindsey RH, Burden DA, Osheroff N. N-acetyl-p-benzoquinone imine, the toxic metabolite of acetaminophen, is a topoisomerase II poison. Biochemistry. 20040;43(12):3731-3739.

DOI: 10.1021/bi036107r.

Placke ME, Ginsberg GL, Wyand DS, Cohen SD. Ultrastructural changes during acute acetaminophen-induced hepatotoxicity in the mouse: a time and dose study. Toxicol Pathol. 1987;15(4):431-438.

DOI: 10.1177/019262338701500407.

Meyers LL, Beierschmitt WP, Khairallah EA, Cohen SD. Acetaminophen-induced inhibition of hepatic mitochondrial respiration in mice. Toxicol Appl Pharmacol. 1988;93(3):378-387.

DOI: 10.1016/0041-008x(88)90040-3.

Jaeschke HA. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther. 1990;255(3):935-941.

McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30(9):2174-2187.

DOI: 10.1007/s11095-013-1007-6.

Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76(1):1-10.

DOI: 10.1046/j.1471-4159.2001.00054.x.

Martins AP, Salgueiro LR, Da Cunha AP, Vila R, Cañigueral S, Tomi F, et al. Chemical composition of the bark oil of Cedrela odorata from S. Tome and Principe. J Essent Oil Res. 2003;15(6):422-424..

DOI: 10.1080/10412905.2003.9698629.

Almonte-Flores DC, Paniagua-Castro N, Escalona-Cardoso G, Rosales-Castro M. Pharmacological and genotoxic properties of polyphenolic extracts of Cedrela odorata L. and Juglans regia L. barks in rodents. Evid Based Complement Alternat Med. 2015;2015:187346,1-9.

DOI: 10.1155/2015/187346.

Giordani MA, Collicchio TC, Ascêncio SD, de Oliveira Martins DT, Balogun SO, Bieski IG, et al. Hydroethanolic extract of the inner stem bark of Cedrela odorata has low toxicity and reduces hyperglycemia induced by an overload of sucrose and glucose. J Ethnopharmacol. 2015;162:352-361.

DOI: 10.1016/j.jep.2014.12.059.

Mossanen JC, Tacke F. Acetaminophen-induced acute liver injury in mice. Lab Anim. 2015;49(1_Suppl):30-36.

DOI: 10.1177/0023677215570992.

Harborne TB, Mabry TJ, Mabry H. The Flavonoids. First edition. London: Springer; 1975. pp: 219.

DOI: 10.1007/978-1-4899-2909-9.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77.

DOI: 10.1016/0003-9861(59)90090-6.

Ohakawa H, Okishi N, Yagi K. Assay for lIPid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358.

DOI: 10.1016/0003-2697(79)90738-3.

Ghobadi S, Dastan D, Soleimani M, Nili-Ahmadabadi A. Hepatoprotective potential and antioxidant activity of Allium tripedale in acetaminophen-induced oxidative damage. Res Pharm Sci. 2019;14(6):488-495.

DOI: 10.4103/1735-5362.272535.

Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible pathways of hepatotoxicity caused by chemical agents. Curr Drug Metab. 2019;20(11):867-879.

DOI: 10.2174/1389200220666191105121653.

Hamzeh M, Hosseinimehr SJ, Khalatbary AR, Mohammadi HR, Dashti A, Amiri FT. Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model. Res Pharm Sci. 2018;13(5):440-449.

DOI: 10.4103/1735-5362.236837.

Hohmann MS, Cardoso RD, Fattori V, Arakawa NS, Tomaz JC, Lopes NP, et al. Hypericum perforatum reduces paracetamol-induced hepatotoxicity and lethality in mice by modulating inflammation and oxidative stress. Phytother Res. 2015;29(7):1097-1101.

DOI: 10.1002/ptr.5350.

Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, González-Rodríguez Á, et al. SIRT1 Controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal. 2018;28(13):1187-1208.

DOI: 10.1089/ars.2017.7373.

Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, et al. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res. 2019;43(1):10-19.

DOI: 10.1016/j.jgr.2017.07.003.

Senthilkumar R, Chandran R, Parimelazhagan T. Hepatoprotective effect of Rhodiolaimbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi J Biol Sci. 2014;21(5):409-416.

DOI: 10.1016/j.sjbs.2014.04.001.

Küpeli E, Orhan DD, Yesilada E. Effect of Cistus laurifolius L. leaf extracts and flavonoids on acetaminophen-induced hepatotoxicity in mice. J Ethnopharmacol. 2006;103(3):455-460.

DOI: 10.1016/j.jep.2005.08.038.

El Morsy EM, Kamel R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm Biol. 2015;53(2): 167-173.

DOI: 10.3109/13880209.2014.913066.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

DOI: 10.1080/01926230701320337.

Gujral JS, Knight TR, Farhood A, Bajt ML, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci. 2002;67(2):322-328.

DOI: 10.1093/toxsci/67.2.322.

Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15(2):158-163.

DOI: 10.1016/S0955-0674(03)00008-5.

Shi C, Hao B, Yang Y, Muhammad I, Zhang Y, Chang Y, et al. JNK signaling pathway mediates acetaminophen-induced hepatotoxicity accompanied by changes of glutathione S-transferase A1 content and expression. Front Pharmacol. 2019;10:1092-1104.

DOI: 10.3389/fphar.2019.01092.

Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50-83.

DOI: 10.1128/MMBR.00031-10.

Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal. 2009;11(9):2245-2263.

DOI: 10.1089/ars.2009.2611.

Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen‐induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology. 2004;40(5):1170-1179.

DOI: 10.1002/hep.20437.

Karna KK, Choi BR, You JH, Shin YS, Cui WS, Lee SW, et al. The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats. BMC Complement Altern Med. 2019;19(1):333-345.

DOI: 10.1186/s12906-019-2736-9.

Tsai MS, Wang YH, Lai YY, Tsou HK, Liou GG, Ko JL, et al. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicol Lett. 2018;290:97-109.

DOI: 10.1016/j.toxlet.2018.03.024.

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res. 2019;33(2):263-275.

DOI: 10.1002/ptr.6227.

Cao L, Kwara A, Greenblatt DJ. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017;69(12):1762-1772.

DOI: 10.1111/jphp.12812.

Liu HY, Peng HY, Hsu SL, Jong TT, Chou ST. Chemical characterization and antioxidative activity of four 3-hydroxyl-3-methylglutaroyl (HMG)-substituted flavonoid glycosides from Graptopetalum paraguayense E. Walther. Bot Stud. 2015;56(1):8-16.

DOI: 10.1186/s40529-015-0088-4.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.