Effects of valsartan on morphine tolerance and dependence in rats

Ayat Kaeidi , Morteza Amirteimoury, Mohammad-Saleh Zare, Amirhossein Nazari, Elham Hakimizadeh, Jalal Hassanshahi, Iman Fatemi


Background and purpose: Opiates are traditionally used for the treatment of pain. Chronic consumption of opiates such as morphine (MOR) induces tolerance and dependence. This study aimed to investigate the effects of valsartan (VAL), as an angiotensin II receptor blocker, on the induction and expression of MOR analgesic tolerance and physical dependence in rats.

Experimental approach: MOR 10 mg/kg was injected s.c. twice a day for 7 days to induce tolerance and dependence. For evaluating the effect of VAL on the induction of MOR analgesic tolerance and physical dependence, 20 mg/kg VAL was administered orally (once a day) during the 7 days of the examination period. The tail-flick test was performed every day. On day 7, 5 mg/kg naloxone () was injected s.c. into the morphine-dependent rats and the rats were monitored for 30 min for the frequency of withdrawal signs such as jumping, diarrhea, defecation, head tremor, rearing, scratching, sniffing, teeth chattering, and wet-dog shake. For evaluating the effect of VAL on the expression of MOR-analgesic tolerance and physical dependence, 45 min before the last MOR injection, VAL was administered only on day 7. The tail-flick test was performed and naloxone was injected into the addicted rats and they were monitored for 30 min for the frequency of withdrawal signs such as jumping, diarrhea, defecation, head tremor, rearing, scratching, sniffing, teeth chattering, and wet-dog shake.

Findings/Results: Our results revealed that the co-administration of VAL with MOR for 7 consecutive days reduced the induction of MOR tolerance. Moreover, VAL administration for 7 days along with MOR reduced the frequency of diarrhea and defecation in naloxone-injected animals.

Conclusion and implications: According to the results presented in this study, chronic administration of VAL prevented the induction of MOR-analgesic tolerance and dependence in rats.




Keywords: Morphine; Physical dependence; Rat; Tolerance; Valsartan.

Full Text:



Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clin Pharmacol Ther. 2007;81(3):429-444.

DOI: 10.1038/sj.clpt.6100095.

Hemati K, Pourhanifeh MH, Dehdashtian E, Fatemi I, Mehrzadi S, Reiter RJ, et al. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol. 2021;35(1):25-39.

DOI: 10.1111/fcp.12566.

Rezazadeh H, Hosseini Kahnouei M, Hassanshahi G, Allahtavakoli M, Shamsizadeh A, Roohbakhsh A, et al. Regulatory effects of chronic low-dose morphine on nitric oxide level along with baroreflex sensitivity in two-kidney one-clip hypertensive rats. Iran J Kidney Dis. 2014;8(3):194-200.

Xin W, Chun W, Ling L, Wei W. Role of melatonin in the prevention of morphine-induced hyperalgesia and spinal glial activation in rats: protein kinase C pathway involved. Int J Neurosci. 2012;122(3):154-163.

DOI: 10.3109/00207454.2011.635828.

Fatemi I, Amirteimoury M, Shamsizadeh A, Kaeidi A. The effect of metformin on morphine analgesic tolerance and dependence in rats. Res Pharm Sci. 2018;13(4):316-323.

DOI: 10.4103/1735-5362.235158.

Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. 2019;20(17):4302-4324.

DOI: 10.3390/ijms20174302.

Cahill CM, Walwyn W, Taylor AMW, Pradhan AAA, Evans CJ. Allostatic mechanisms of opioid tolerance beyond desensitization and downregulation. Trends Pharmacol Sci. 2016;37(11):963-976.

DOI: 10.1016/j.tips.2016.08.002.

Hassanipour M, Rajai N, Rahimi N, Fatemi I, Jalali M, Akbarian R, et al. Sumatriptan effects on morphine-induced antinociceptive tolerance and physical dependence: the role of nitric oxide. Eur J Pharmacol. 2018;835:52-60.

DOI: 10.1016/j.ejphar.2018.07.021.

Osmanlıoğlu HO, Yıldırım MK, Akyuva Y, Yıldızhan K, Nazıroğlu M. Correction to: morphine induces apoptosis, inflammation, and mitochondrial oxidative stress via activation of TRPM2 channel and nitric oxide signaling pathways in the hippocampus. Mol Neurobiol. 2020;57(8):3390.

DOI: 10.1007/s12035-020-01992-5.

Song L, Wu C, Zuo Y. Melatonin prevents morphine-induced hyperalgesia and tolerance in rats: role of protein kinase C and N-methyl-D-aspartate receptors. BMC Anesthesiol. 2015;15(1):12-20.

DOI: 10.1186/1471-2253-15-12.

Ismail H, Mitchell R, McFarlane SI, Makaryus AN. Pleiotropic effects of inhibitors of the RAAS in the diabetic population: above and beyond blood pressure lowering. Curr Diab Rep. 2010;10(1):32-36.

DOI: 10.1007/s11892-009-0081-y.

Abbassi YA, Mohammadi MT, Foroshani MS, Sarshoori JR. Captopril and valsartan may improve cognitive function through potentiation of the brain antioxidant defense system and attenuation of oxidative/nitrosative damage in STZ-induced dementia in rat. Adv Pharm Bull. 2016;6(4):531-539.

DOI: 10.15171/apb.2016.067.

Wakai T, Yoshioka H, Yagi T, Kato T, Kinouchi H. Effects of valsartan on neuroprotection and neurogenesis after ischemia. Neuroreport. 2011;22(8):385-390.

DOI: 10.1097/WNR.0b013e328346be84.

Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, et al. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis. 2014;68:126-136.

DOI: 10.1016/j.nbd.2014.04.018.

Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138(Pt 11):3299-3315.

DOI: 10.1093/brain/awv172.

Gabor A, Leenen FHH. Cardiovascular effects of angiotensin II and glutamate in the PVN of Dahl salt-sensitive rats. Brain Res. 2012;1447:28-37.

DOI: 10.1016/j.brainres.2012.01.060.

Zhou X, Yang H, Song X, Wang J, Shen L, Wang J. Central blockade of the AT1 receptor attenuates pressor effects via reduction of glutamate release and downregulation of NMDA/AMPA receptors in the rostral ventrolateral medulla of rats with stress-induced hypertension. Hypertens Res. 2019;42(8):1142-1151.

DOI: 10.1038/s41440-019-0242-6.

Hosseini M, Alaei HA, Headari R, Eslamizadeh MJ. Effects of microinjection of angiotensin II and captopril into nucleus accumbens on morphine self-administration in rats. Indian J Exp Biol. 2009;47(5):361-367.

Hosseini M, Sharifi MR, Alaei H, Shafei MN, Karimooy HAN. Effects of angiotensin II and captopril on rewarding propreties of morphine. Indian J Exp Biol. 2007;45(9):770-777.

Alaei H, Hosseini M. Angiotensin converting enzyme inhibitor captopril modifies conditioned place preference induced by morphine and morphine withdrawal signs in rats. Pathophysiology. 2007;14(1):55-60.

DOI: 10.1016/j.pathophys.2007.01.002.

Hajhashemi V, Zeinvand H. Effects of lisinopril, captopril and losartan alone or in combination with morphine in light tail flick analgesic test. Res Pharm Sci. 2009;2(2):97-101.

Yang WN, Hu XD, Han H, Shi LL, Feng GF, Liu Y, et al. The effects of valsartan on cognitive deficits induced by aluminum trichloride and d-galactose in mice. Neurol Res. 2014;36(7):651-658.

DOI: 10.1179/1743132813Y.0000000295.

Zhao J, Xin X, Xie GX, Palmer PP, Huang YG. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mol Pain. 2012;8:38-49.

DOI: 10.1186/1744-8069-8-38.

Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47(Suppl 1):33-46.

DOI: 10.1016/j.neuropharm.2004.06.025.

Matchar DB, McCrory DC, Orlando LA, Patel MR, Patel UD, Patwardhan MB, et al. Systematic review: comparative effectiveness of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers for treating essential hypertension. Ann Intern Med. 2008;148(1):16-29.

DOI: 10.7326/0003-4819-148-1-200801010-00189.

Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, et al. Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci. 2004;114(8):1001-1011.

DOI: 10.1080/00207450490461314.

Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, et al. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther. 2009;329(1):64-75.

DOI: 10.1124/jpet.108.146290.

Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med. 2011;51(5):951-966.

DOI: 10.1016/j.freeradbiomed.2011.01.026.

Mori T, Ito S, Matsubayashi K, Sawaguchi T. Comparison of nitric oxide synthase inhibitors, phospholipase A2 inhibitor and free radical scavengers as attenuators of opioid withdrawal syndrome. Behav Pharmacol. 2007;18(8):725-729.

DOI: 10.1097/FBP.0b013e3282f18da6.

Ozmen I, Naziroglu M, Alici HA, Sahin F, Cengiz M, Eren I. Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neuroch Res. 2007;32(1):19-25.

DOI: 10.1007/s11064-006-9217-5.

Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest. 2007;117(11):3530-3539.

DOI: 10.1172/JCI32420.

Bild W, Hritcu L, Stefanescu C, Ciobica A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:79-88.

DOI: 10.1016/j.pnpbp.2012.12.009.

Saffar S, Fatemi I, Rahmani M, Hassanshahi J, Sahamsizadeh A, Allahtavakoli M, et al. The effect of epigallocatechin-3-gallate on morphine-induced memory impairments in rat: EGCG effects on morphine neurotoxicity. Hum Exp Toxicol. 2020;39(7):994-1002.

DOI: 10.1177/0960327120909540.

Shibani F, Sahamsizadeh A, Fatemi I, Allahtavakoli M, Hasanshahi J, Rahmani M, et al. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(11):1383-1391.

DOI: 10.1007/s00210-019-01678-3.

Saavedra JM. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123(10):567-590.

DOI: 10.1042/CS20120078.

Makary S, Abdo M, Hassan WA, Tawfik MK. Angiotensin blockade attenuates diabetic nephropathy in hypogonadal adult male rats. Can J Physiol Pharmacol. 2019;97(8):708-720.

DOI: 10.1139/cjpp-2018-0572.

Gong X, Zhou R, Li Q. Effects of captopril and valsartan on ventricular remodeling and inflammatory cytokines after interventional therapy for AMI. Exp Ther Med. 2018;16(4):3579-3583.

DOI: 10.3892/etm.2018.6626.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.