Effect of biotin supplementation on neuropathic pain induced by chronic constriction of the sciatic nerve in the rat
Abstract
Background and purpose: Neuropathic pain is one of the most common types of chronic pain that is very difficult to treat. Numerous studies have shown the potential role of vitamins in relieving both hyperalgesia and allodynia. Based on the convincing evidence, this study was designed to evaluate the possible antinociceptive effect of biotin on neuropathic pain in rats.
Experimental approach: This study was performed on male Sprague Dawley rats weighing 200-300 g. Neuropathic pain was induced by tying the sciatic nerve. Chronic constriction injury (CCI) of the sciatic nerve resulted in hyperalgesia and allodynia. To measure the thermal hyperalgesia, the plantar test was used. Also to evaluate the cold and mechanical allodynia, acetone test and von Frey test were applied. Biotin (4, 8, and 16 mg/kg) was administered orally as two different treatment regimens, acute and chronic.
Findings/Results: Acute oral administration of biotin (4, 8, and 16 mg/kg p.o.) on the 7th, 14th, and 21st postoperative days couldn’t reduce pain sensitivity compared to the CCI group. However, following the oral administration of biotin (8 and 16 mg/kg p.o.) from the first day after the surgery until day 21, mechanical allodynia (P < 0.001) and heat hyperalgesia (P < 0.05) significantly relieved.
Conclusion and implications: Our results suggest that biotin can be considered as a potential therapeutic for the treatment of neuropathic pain, and supplementation with this vitamin could reduce the required doses of analgesic drugs. However, further studies are needed to confirm this hypothesis.
Keywords
Full Text:
PDFReferences
Tembhurne S, Sakarkar D. Influence of Murraya koenigii on experimental model of diabetes and progression of neuropathic pain. Res Pharm Sci. 2010;5(1):41-47.
Amin B, Hajhashemi V, Hosseinzadeh H. Minocycline potentiates the anti-hyperalgesic effect of ceftriaxone in CCI-induced neuropathic pain in rats. Res Pharm Sci. 2015;10(1):34-42.
Hughes JP, Chessell I, Malamut R, Perkins M, Bačkonja M, Baron R, et al. Understanding chronic inflammatory and neuropathic pain. Ann N Y Acad Sci. 2012;1255:30-44.
DOI: 10.1111/j.1749-6632.2012.06561.x.
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51(2):240-264.
DOI: 10.1016/j.brainresrev.2005.11.004.
Pfau DB, Krumova EK, Treede RD, Baron R, Toelle T, Birklein F, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): reference data for the trunk and application in patients with chronic postherpetic neuralgia. Pain. 2014;155(5):1002-1015.
DOI: 10.1016/j.pain.2014.02.004.
Dworkin RH, O'Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, et al. Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc. 2010;85(3 Suppl):S3-S14.
DOI: 10.4065/mcp.2009.0649.
Schug SA, Goddard C. Recent advances in the pharmacological management of acute and chronic pain. Ann Palliat Med. 2014;3(4):263-275.
DOI: 10.3978/j.issn.2224-5820.2014.10.02.
Mesdaghinia A, Alinejad M, Abed A, Heydari A, Banafshe HR. Anticonvulsant effects of thiamine on pentylenetetrazole-induced seizure in mice. Nutr Neurosci. 2019;22(3):165-173.
DOI: 10.1080/1028415X.2017.1357919.
Said HM. Biotin: biochemical, physiological and clinical aspects. Subcell Biochem. 2012;56:1-19.
DOI: 10.1007/978-94-007-2199-9_1.
Pacheco-Alvarez D, Solórzano-Vargas RS, Del Rı́o AL. Biotin in metabolism and its relationship to human disease. Arch Med Res. 2002;33(5):439-447.
DOI: 10.1016/s0188-4409(02)00399-5.
McMahon RJ. Biotin in metabolism and molecular biology. Annu Rev Nutr. 2002;22:221-239.
DOI: 10.1146/annurev.nutr.22.121101.112819.
Chedrawi AK, Ali A, Al Hassnan ZN, Faiyaz-Ul-Haque M, Wolf B. Profound biotinidase deficiency in a child with predominantly spinal cord disease. J Child Neurol. 2008;23(9):1043-1048.
DOI: 10.1177/0883073808318062.
Rathi N, Rathi M. Biotinidase deficiency with hypertonia as unusual feature. Indian Pediatr. 2009;46(1):65-67.
Joshi SN, Fathalla M, Koul R, Maney MA, Bayoumi R. Biotin responsive seizures and encephalopathy due to biotinidase deficiency. Neurol India. 2010;58(2):323-324.
DOI: 10.4103/0028-3886.63783.
Adhisivam B, Mahto D, Mahadevan S. Biotin responsive limb weakness. Indian Pediatr. 2007;44(3):228-230.
Bressman S, Fahn S, Eisenberg M, Brin M, Maltese W. Biotin-responsive encephalopathy with myoclonus, ataxia, and seizures. Adv Neurol. 1986;43:119-125.
Fassone E, Wedatilake Y, DeVile CJ, Chong WK, Carr LJ, Rahman S. Treatable Leigh-like encephalopathy presenting in adolescence. BMJ Case Rep. 2013;2013:200838,1-5.
DOI: 10.1136/bcr-2013-200838.
Yilmaz S, Serin M, Canda E, Eraslan C, Tekin H, Ucar SK, et al. A treatable cause of myelopathy and vision loss mimicking neuromyelitis optica spectrum disorder: late-onset biotinidase deficiency. Metab Brain Dis. 2017;32(3):675-678.
DOI: 10.1007/s11011-017-9984-5.
Brigolin C, McKenty N, Pindolia K, Wolf B. Differential gene expression during early development in brains of wildtype and biotinidase-deficient mice. Mol Gene Metab Rep. 2016;9:35-41.
DOI: 10.1016/j.ymgmr.2016.09.007.
Kuroishi T. Regulation of immunological and inflammatory functions by biotin. Can J Physiol Pharmacol. 2015;93(12):1091-1096.
DOI: 10.1139/cjpp-2014-0460.
Dakshinamurti K, Bagchi RA, Abrenica B, Czubryt MP. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats. Can J Physiol Pharmacol. 2015;93(12):1103-1110.
DOI: 10.1139/cjpp-2014-0517.
Schäfers M, Sorkin L. Effect of cytokines on neuronal excitability. Neurosci Lett. 2008;437(3):188-193.
DOI: 10.1016/j.neulet.2008.03.052.
Agrawal S, Agrawal A, Said HM. Biotin deficiency enhances the inflammatory response of human dendritic cells. Am J Physiol Cell Physiol. 2016;311(3):C386-C391.
DOI: 10.1152/ajpcell.00141.2016.
Rodriguez-Melendez R, Schwab LD, Zempleni J. Jurkat cells respond to biotin deficiency with increased nuclear translocation of NF-kB, mediating cell survival. Int J Vitam Nutr Res. 2004;74(3):209-216.
DOI: 10.1024/0300-9831.74.3.209.
Kuroishi T, Endo Y, Muramoto K, Sugawara S. Biotin deficiency up‐regulates TNF‐α production in murine macrophages. J Leukoc Biol. 2008;83(4):912-920.
DOI: 10.1189/jlb.0607428.
Rodriguez-Melendez R, Zempleni J. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells. J Nutr. 2009;139(3):429-433.
DOI: 10.3945/jn.108.101840.
Mimenza Alvarado A, Aguilar Navarro S. Comparative clinical trial of safety and tolerability of gabapentin plus vitamin B1/B12 versus pregabalin in the treatment of painful peripheral diabetic neuropathy. J Pain Relief. 2014;S3:006,1-7.
DOI: 10.4172/2167-0846.S3-006.
Banafshe HR, Khoshnoud MJ, Abed A, Saghazadeh M, Mesdaghinia A. Vitamin D supplementation attenuates the behavioral scores of neuropathic pain in rats. Nutr Neurosci. 2019;22(10):700-705.
DOI: 10.1080/1028415X.2018.1435485.
Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.
DOI: 10.1016/0304-3959(88)90209-6.
Abed A, Hajhashemi V, Banafshe HR, Minaiyan M, Mesdaghinia A. Venlafaxine attenuates heat hyperalgesia independent of adenosine or opioid system in a rat model of peripheral neuropathy. Iran J Pharm Res. 2015;14(3):843-850.
Abed A, Khoshnoud MJ, Taghian M, Aliasgharzadeh M, Mesdaghinia A. Quetiapine reverses paclitaxel-induced neuropathic pain in mice: role of alpha2-adrenergic receptors. Iran J Basic Med Sci. 2017;20(11):1182-1188.
DOI: 10.22038/IJBMS.2017.9500.
Hamidi GA, Jafari-Sabet M, Abed A, Mesdaghinia A, Mahlooji M, Banafshe HR. Gabapentin enhances anti-nociceptive effects of morphine on heat, cold, and mechanical hyperalgesia in a rat model of neuropathic pain. Iran J Basic Med Sci. 2014;17(10):753-759.
Naji-Esfahani H, Vaseghi G, Safaeian L, Pilehvarian AA, Abed A, Rafieian-Kopaei M. Gender differences in a mouse model of chemotherapy-induced neuropathic pain. Lab Anim. 2016;50(1):15-20.
DOI: 10.1177/0023677215575863.
Banafshe HR, Hajhashemi V, Minaiyan M, Mesdaghinia A, Abed A. Antinociceptive effects of maprotiline in a rat model of peripheral neuropathic pain: possible involvement of opioid system. Iran J Basic Med Sci. 2015;18(8):752-757.
Hajhashemi V, Banafshe HR, Minaiyan M, Mesdaghinia A, Abed A. Antinociceptive effects of venlafaxine in a rat model of peripheral neuropathy: role of alpha2-adrenergic receptors. Eur J Pharmacol. 2014;738:230-236.
DOI: 10.1016/j.ejphar.2014.04.046.
Lindblom U, Merskey H, Mumford JM, Nathan PW, Noordenbos W, Sunderland S. Pain terms, a current list with definitions and notes on usage. Pain. 1986;3:215-221.
DOI: 10.1016/0304-3959(86)90113-2.
Lolignier S, Eijkelkamp N, Wood JN. Mechanical allodynia. Pflugers Arch. 2015;467:133-139.
DOI: 10.1007/s00424-014-1532-0.
Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 2017;21(6):28-38.
DOI: 10.1007/s11916-017-0629-5.
Koutsikos D, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother. 1990;44(10):511-514.
DOI: 10.1016/0753-3322(90)90171-5.
Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1-28.
DOI: 10.1111/j.1472-8206.2009.00801.x.
Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain. 2013;14(11):1255-1269.
DOI: 10.1016/j.jpain.2013.06.008.
Sommer C, Leinders M, Üçeyler N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018;159(3):595-602.
DOI: 10.1097/j.pain.0000000000001122.
Zhou Z, Liang Y, Deng F, Cheng Y, Sun J, Guo L, et al. Phosphorylated neuronal nitric oxide synthase in neuropathic pain in rats. Int J Clin Exp Pathol. 2015;8(10):12748-12756.
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814-6838.
DOI: 10.1039/c3cs60467e.
Tong L. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci. 2013;70(5):863-891.
DOI: 10.1007/s00018-012-1096-0.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.