Carboplatin and epigallocatechin-3-gallate synergistically induce cytotoxic effects in esophageal cancer cells

Fatemeh Taghvaei , Sepideh Jafarzadeh Rastin, Attabak Toofani Milani, Zakieh Rostamzadeh Khameneh, Forough Hamini, Mohammad Aziz Rasouli, Keivan Asghari, Amir Mohammad Rekabi Shishavan, Meysam Ebrahimifar , Siamak Rashidi


Background and purpose: We aimed at evaluating the effects of combinatorial treatments with carboplatin and epigallocatechin-3-gallate (EGCG) on the KYSE-30 esophageal cancer (EC) cell line and elucidate the underlying mechanisms.

Experimental approach: EC cells were harvested and exposed to increasing concentrations of carboplatin and EGCG to construct a dose-response plot. Cell inhibitory effects were assessed by the MTT method and apoptosis-related gene expression levels (caspases 8 and 9) and Bcl-2 mRNA were detected using real-time polymerase chain reaction. The lactate levels in the various treated cases were analyzed using the colorimetric assay kit. In addition, total antioxidant capacity was measured.

Findings/Results: The results indicated that, following treatments with carboplatin in IC20, IC25, and                        IC10 concentrations when combined with EGCG in similar concentrations, synergistically decreased cell viability versus single treatments of both agents. Also, in combined treatments at IC20 and IC25 of both agents the gene expression ratio of caspases 8 and 9 upregulated significantly compared to monotherapies (P < 0.05). Bcl-2 gene expression ratios were decreased in double agents treated cells versus monotherapies. Following treatment of KYSE-30 cells with carboplatin and EGCG in double combinations, lactate levels were significantly decreased compared with the untreated cells and single treatments (P < 0.05). Also, in IC25, IC20, and IC10 concentrations of both agents the total antioxidant capacity levels were decreased versus monotherapies and untreated cells.

Conclusion and implications: The presented study determined that treatment with carboplatin and EGCG was capable of promoting cytotoxicity in EC cells and inhibits the cancer progress. Combined treatments with low concentrations of carboplatin and EGCG may promote apoptosis induction and inhibit cell growth. These results confirmed the anticancer effects of carboplatin and EGCG and providing a base for additional use of EGCG to the EC treatment.


Carboplatin; Caspase; Epigallocatechin-3-gallate; Esophageal cancer.

Full Text:



Wang LX, Shi YL, Zhang LJ, Xiang LP, Cai ZY, Lu JL, et al. Inhibitory effects of (-)-epigallocatechin-3-gallate on esophageal cancer. Molecules. 2019;24(5):954-973.

DOI: 10.3390/molecules24050954.

Sajjadiyan Z, Ghadernejad H, Milani AT, Mohammadian M. Preparation of silibinin loaded pegylatedniosomal nanoparticles and investigation of its effect on MCF-10A human breast cancer cell lines. Der Pharmacia Lett. 2016;8(16):70-75.

Aichler M, Motschmann M, Jütting U, Luber B, Becker K, Ott K, et al. Epidermal growth factor receptor (EGFR) is an independent adverse prognostic factor in esophageal adenocarcinoma patients treated with cisplatin-based neoadjuvant chemotherapy. Oncotarget. 2014;5(16):6620-6632.

DOI: 10.18632/oncotarget.2268.

Meng J, Tong Q, Liu X, Yu Z, Zhang J, Gao B. Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncol Lett. 2017;14(1):1152-1156.

DOI: 10.3892/ol.2017.6248.

Mohammadi M, Pirayesh Islamian J, Karami H, Oladghaffari M, Farajollahi A, Nejati-Koshki K. Role of HDM2 gene in radio-sensitivity of esophageal cancer cell lines to irradiation. Int J Cancer Manag. 2017;10(6):e8950.

DOI: 10.5812/ijcm.8950.

Hesari A, Azizian M, Sheikhi A, Nesaei A, Sanaei S, Mahinparvar N, et al. Chemopreventive and therapeutic potential of curcumin in 5 esophageal cancer: current and future status. Int J Cancer. 2019;144(6):1215-1226.

DOI: 10.1002/ijc.31947.

Mohammadian M, Zeynali S, Azarbaijani AF, Khadem Ansari MH, Kheradmand F. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines. Res Pharm Sci. 2017;12(6):517-525.

DOI: 10.4103/1735-5362.217432.

Moradi Z, Mohammadian M, Saberi H, Ebrahimifar M, Mohammadi Z, Ebrahimpour M, et al. Anti-cancer effects of chemotherapeutic agent; 17-AAG, in combined with gold nanoparticles and irradiation in human colorectal cancer cells. Daru. 2019;27(1): 111-119.

DOI: 10.1007/s40199-019-00251-w.

Mohammadian M, Feizollahzadeh S, Mahmoudi R, Toofani Milani A, Rezapour-Firouzi S, Karimi Douna B. Hsp90 inhibitor; NVP-AUY922 in combination with doxorubicin induces apoptosis and downregulates VEGF in MCF-7 breast cancer cell line. Asian Pac J Cancer Prev. 2020;21(6):1773-1778.

DOI: 10.31557/APJCP.2020.21.6.1773.

Zeynali Moghaddam S, Mohammadian M, Kheradmand F, Fathi-Azarbayjani A, Rasmi Y, Esna-Ashari O, et al. A molecular basis for the synergy between 17-allylamino-17-demethoxy geldanamycin with capecitabine and irinotecan in human colorectal cancer cells through VEFG and MMP-9 gene expression. Gene. 2019;684:30-38.

DOI: 10.1016/j.gene.2018.10.016.

Mohammadian M, Zeynali-Moghaddam S, Khadem Ansari MH, Rasmi Y, Fathi Azarbayjani A, Kheradmand F. Dihydropyrimidine dehydrogenase levels in colorectal cancer cells treated with a combination of heat shock protein 90 inhibitor and oxaliplatin or capecitabine. Adv Pharm Bull. 2019;9(3):439-444.

DOI: 10.15171/apb.2019.052.

Maroufi NF, Vahedian V, Akbarzadeh M, Mohammadian M, Zahedi M, Isazadeh A, et al. The apatinib inhibits breast cancer cell line MDA-MB-231 in vitro by inducing apoptosis, cell cycle arrest, and regulating nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Breast Cancer. 2020;27(4):613-620.

DOI: 10.1007/s12282-020-01055-6.

Liu L, Ju Y, Wang J, Zhou R. Epigallocatechin-3-gallate promotes apoptosis and reversal of multidrug resistance in esophageal cancer cells. Pathol Res Pract. 2017;213(10):1242-1250.

DOI: 10.1016/j.prp.2017.09.006.

Arshad Z, Rezapour-Firouzi S, Mohammadian M, Ebrahimifar. The sources of essential fatty acids for allergic and cancer patients; a connection with insight into mammalian target of rapamycin: a narrative review. Asian Pac J Cancer Prev. 2018;19(9):2391-2401.

DOI: 10.22034/APJCP.2018.19.9.2391.

Toofani Milani A, Rashidi S, Mahmoudi R, Karimi Douna B. Cytotoxic activity of epigallocatechin and trans-cinnamaldehyde in gastric cancer cell line. Asian Pac J Cancer Biol. 2019;4(4):71-74.

DOI: 10.31557/APJCB.2019.4.4.71-74.

Arshad Z, Rezapour-Firouzi S, Ebrahimifar M, Mosavi Jarrahi A, Mohammadian M. Association of delta-6-desaturase expression with aggressiveness of cancer, diabetes mellitus, and multiple sclerosis: a narrative review. Asian Pac J Cancer Prev. 2019;20(4):1005-1018.

DOI: 10.31557/APJCP.2019.20.4.1005.

Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-446.

DOI: 10.1158/0008-5472.CAN-09-1947.

Askari N, Shafieipour S, Aghajanpour M. Role of BAX, BCL-2, and MICAL-2 genes in esophageal cancer. Res Med. 2019;43;170-176.

Aghababazadeh M, Dorraki N, Javan FA, Fattahi AS, Gharib M, Pasdar A. Downregulation of caspase 8 in a group of Iranian breast cancer patients-a pilot study. J Egypt Natl Canc Inst. 2017;29(4):191-195.

DOI: 10.1016/j.jnci.2017.10.001.

Farahani Z, Parivar K, Hayati Roodbari N, Farhadi M. Comparative study of the cytotoxic effect of silver nanoparticles onhuman lymphocytes and HPB-ALL cell line: as an in vitro study. Iran Red Crescent Med J. 2020;22(2):e98803,1-6.

Benzie IF, Strain J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15-27.

DOI: 10.1016/s0076-6879(99)99005-5.

Biersack B. Interactions between anticancer active platinum complexes and non-coding RNAs/microRNAs. Noncoding RNA Res. 2016;2(1):1-17.

DOI: 10.1016/j.ncrna.2016.10.001.

Ahosseini M, Abbasian S, Moloudian H, Karimi F, Khoshayand M. Evaluation of antioxidant properties of Iran’s native plants and investigation their synergistic effects with tea. Res Pharm Sci. 2012;7(5):S10.

Rezapour-Firouzi S, Mohammadian M, Sadeghzadeh M, Mehranfar S, Mazloomi E. The effects of evening primrose/hemp seed oil compared to rapamycin on the gene expression of immunological parameters in experimental autoimmune encephalomyelitis splenocytes. Iran J Allergy Asthma Immunol. 2020;19(2):183-192.

DOI: 10.18502/ijaai.v19i2.2771.

Hajizadeh MR, Maleki H, Barani M, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. in vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents. Res Pharm Sci. 2019;14(5):448-458. DOI:10.4103/1735-5362.268206.

Sulistyo H, Kurniawan DW, Rujito L. Biochemical and histopathological effects of green tea nanoparticles in ironized mouse model. Res Pharm Sci. 2017;12(2):99-106.

DOI: 10.4103/1735-5362.202448.

Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 2003;133(10):3275S-3284S.

DOI: 10.1093/jn/133.10.3275S.

Dehshahri S, Wink M, Afsharypuor S, Asghari G, Mohagheghzadeh A. Antioxidant activity of methanolic leaf extract of Moringa peregrina (Forssk.) Fiori. Res Pharm Sci. 2012;7(2):111-118.

An Z, Qi Y, Huang D, Gu X, Tian Y, Li P, et al. EGCG inhibits Cd(2+)-induced apoptosis through scavenging ROS rather than chelating Cd(2+) in HL-7702 cells. Toxicol Mech Methods. 2014;24(4):259-267.

DOI: 10.3109/15376516.2013.879975.

Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci (Elite Ed). 2012;4:111-131.

DOI: 10.2741/363.

Mohamadi N, Kazemi SM, Mohammadian M, Toofani Milani A, Moradi Y, Yasemi M, et al. Toxicity of cisplatin-loaded poly butyl cyanoacrylate nanoparticles in a brain cancer cell line: anionic polymerization results. Asian Pac J Cancer Prev. 2017;18(3):629-632.

DOI: 10.22034/APJCP.2017.18.3.629.

Wu Y, Zhao D, Zhuang J, Zhang F, Xu C. Caspase-8 and caspase-9 functioned differently at different stages of the cyclic stretch-induced apoptosis in human periodontal ligament cells. PLoS One. 2016;11(12):e0168268,1-15.

DOI: 10.1371/journal.pone.0168268.

Wu MH, Jin XK, Yu AQ, Zhu YT, Li D, Li WW, et al. Caspase-mediated apoptosis in crustaceans: cloning and functional characterization of EsCaspase-3-like protein from Eriocheir sinensis. Fish Shellfish Immunol. 2014;41(2):625-632.

DOI: 10.1016/j.fsi.2014.10.017.

Ye F, Zhang GH, Guan BX, Xu XC. Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol. 2012;18(2):126-135.

DOI: 10.3748/wjg.v18.i2.126.

Liu L, Zuo J, Wang G. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis in Ec9706 and Eca109 esophageal carcinoma cells. Oncol Lett. 2017;14(4):4391-4395.

DOI: 10.3892/ol.2017.6712.

Pan H, Chen J, Shen K, Wang X, Wang P, Fu G, et al. Mitochondrial modulation by epigallocatechin 3-gallate ameliorates cisplatin induced renal injury through decreasing oxidative/nitrative stress, inflammation and NF-kB in mice. PLoS One. 2015;10(4):e0124775,1-18.

DOI: 10.1371/journal.pone.0124775.

Gao Y, Li W, Jia L, Li B, Chen YC, Tu Y. Enhancement of (-)-epigallocatechin-3-gallate and theaflavin-3-3’-digallate induced apoptosis by ascorbic acid in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells via MAPK pathways. Biochem Biophys Res Commun. 2013;438(2):370-374.

DOI: 10.1016/j.bbrc.2013.07.078.

Shah AT, Demory Beckler M, Walsh AJ, Jones WP, Pohlmann PR, Skala MC. Optical metabolic imaging of treatment response in human head and neck squamous cell carcinoma. PLoS One. 2014;9(3):e90746,1-10.

DOI: 10.1371/journal.pone.0090746.

San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 2017;38(2):119-133.

DOI: 10.1093/carcin/bgw127.

Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996-16016.

DOI: 10.18632/oncotarget.13723.

Ouyang J, Zhu K, Liu Z, Huang J. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxid Med Cell Longev. 2020;2020:9723686,1-14.

DOI: 10.1155/2020/9723686.

Lee SH, Nam HJ, Kang HJ, Kwon HW, Lim YC. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur J Cancer. 2013;49(15):3210-3218.

DOI: 10.1016/j.ejca.2013.06.025.

Rady I, Mohamed H, Rady M, Siddiqui IA, Mukhtar H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egypt J Basic Appl Sci. 2018;5(1):1-23.

DOI: 10.1016/j.ejbas.2017.12.001.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.