Mutual assistance of nucleus accumbens cannabinoid receptor-1 and orexin receptor-2 in response to nicotine: a single-unit study

Reza Fartootzadeh , Hojjatallah Alaei, Parham Reisi


Background and purpose: The nucleus accumbens (NAc) express both orexin-2 receptor (OX2R) and cannabinoid receptor type 1 (CB1R). Orexin and cannabinoid regulate the addictive properties of nicotine. In this study, the effect of the CB1R blockade on the electrical activity of NAc neurons in response to nicotine, and its probable interaction with the OX2R in this event, within this area, were examined via the single-unit recording.

Experimental approach: The spontaneous firing rate of NAc was initially recorded for 15 min, and then 5 min before subcutaneous injection of nicotine (0.5 mg/kg)/saline, AM251 and TCS-OX2-29 were injected into the NAc. Neuronal responses were recorded for 70 min, after nicotine administration.

Findings/Results: Nicotine excited the NAc neurons significantly and intra-NAc microinjection of AM251 (25 and 125 ng/rat), as a selective CB1R antagonist, prevented the nicotine-induced increases of NAc neuronal responses. Moreover, microinjection of AM251 (125 ng/rat), before saline injection, could not affect the percentage of change of the neuronal response. Finally, simultaneous intra-NAc administration of the effective or ineffective doses of AM251 and TCS-OX2-29 (a selective antagonist of OX2R) prevented the nicotine-induced increases of NAc neuronal responses, so that there was a significant difference between the group received ineffective doses of both antagonists and the AM251 ineffective dose.

Conclusion and implications: The results suggest that the CB1R can modulate the NAc reaction to the nicotine, and it can be concluded that there is a potential interplay between the OX2R and CB1R in the NAc, in relation to nicotine.


AM251; Cannabinoid system; Nicotine; Nucleus accumbens; Orexin system; Single-unit recording.

Full Text:



Goniewicz ML, Delijewski M. Nicotine vaccines to treat tobacco dependence. Hum Vaccin Immunother. 2013;9(1):13-25.

DOI: 10.4161/hv.22060.

Ortells MO, Arias HR. Neuronal networks of nicotine addiction. Int J Biochem Cell Biol. 2010;42(12):1931-1935.

DOI: 10.1016/j.biocel.2010.08.019.

Mark GP, Shabani S, Dobbs LK, Hansen ST. Cholinergic modulation of mesolimbic dopamine function and reward. Physiol Behav. 2011; 104(1):76-81.

DOI: 10.1016/j.physbeh.2011.04.052.

Wu J, Gao M, Shen JX, Shi WX, Oster AM, Gutkin BS. Cortical control of VTA function and influence on nicotine reward. Biochem Pharmacol. 2013;86(8):1173-1180.

DOI: 10.1016/j.bcp.2013.07.013.

Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162(3):622-634.

DOI: 10.1016/j.cell.2015.07.015.

Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, et al. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J. 2007;21(3):802-811.

DOI: 10.1096/fj.06-7132com.

Jin L, Pan L, Guo Y, Zheng Y, Nie Z, Zhu R. Expression and localization of cannabinoid receptor 1 in rats’ brain treated with acute and repeated morphine. Acta Neurobiol Exp (Wars). 2014;74(3):288-297.

Azizi F, Fartootzadeh R, Alaei H, Reisi P. Effects of concurrent blockade of OX2 and CB1 receptors in the ventral tegmental area on nicotine-induced place preference in rats. Neurosci Lett. 2018;684:121-126.

DOI: 10.1016/j.neulet.2018.07.017.

Fartootzadeh R, Azizi F, Alaei H, Reisi P. Functional crosstalk of nucleus accumbens CB1 and OX2 receptors in response to nicotine-induced place preference. Neurosci Lett. 2019;698:160-164.

DOI: 10.1016/j.neulet.2019.01.027.

Lopez-Moreno JA, Gonzalez-Cuevas G, Moreno G, Navarro M. The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol. 2008;13(2):160-187.

DOI: 10.1111/j.1369-1600.2008.00105.x.

Viveros MP, Marco EM, File SE. Nicotine and cannabinoids: parallels, contrasts and interactions. Neurosci Biobehav Rev. 2006;30(8):1161-1181.

DOI: 10.1016/j.neubiorev.2006.08.002.

Alijanpour S, Rezayof A. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice. Neuroscience. 2013;245:61-73.

DOI: 10.1016/j.neuroscience.2013.04.030.

Biala G, Kruk M, Budzynska B. Effects of the cannabinoid receptor ligands on anxiety-related effects of d-amphetamine and nicotine in the mouse elevated plus maze test. J Physiol Pharmacol. 2009;60(2):113-122.

Dukes AJ, Fowler JP, Lallai V, Pushkin AN, Fowler CD. Adolescent cannabinoid and nicotine exposure differentially alters adult nicotine self-administration in males and females. Nicotine Tob Res. 2020;22(8):1364-1373.

DOI: 10.1093/ntr/ntaa084.

Sharf R, Sarhan M, Dileone RJ. Role of orexin/hypocretin in dependence and addiction. Brain Res. 2010;1314:130-138.

DOI: 10.1016/j.brainres.2009.08.028.

Yazdi F, Jahangirvand M, Pirasteh AH, Moradi M, Haghparast A. Functional interaction between OX2 and CB1 receptors in the ventral tegmental area and the nucleus accumbens in response to place preference induced by chemical stimulation of the lateral hypothalamus. Pharmacol Biochem Behav. 2015;139(Pt A):39-46.

DOI: 10.1016/j.pbb.2015.10.012.

Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull. 2018;137:217-224.

DOI: 10.1016/j.brainresbull.2017.12.008.

Kukkonen JP, Leonard CS. Orexin/hypocretin receptor signalling cascades. Br J Pharmacol. 2014;171(2):314-331.

DOI: 10.1111/bph.12324.

Fartootzadeh R, Azizi F, Alaei H, Reisi P. Orexin type-2 receptor blockade prevents the nicotine-induced excitation of nucleus accumbens core neurons in rats: an electrophysiological perspective. Pharmacol Rep. 2019;71(2):361-366.

DOI: 10.1016/j.pharep.2018.12.013.

Alger BE, Kim J. Supply and demand for endocannabinoids. Trends Neurosci. 2011;34(6):304-315.

DOI: 10.1016/j.tins.2011.03.003.

Mackie K. Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol. 2005;168:299-325.

DOI: 10.1007/3-540-26573-2_10.

Tsunematsu T, Yamanaka A. The role of orexin/hypocretin in the central nervous system and peripheral tissues.Vitam Horm. 2012;89:19-33.

DOI: 10.1016/B978-0-12-394623-2.00002-0.

Berrendero F, Flores A, Robledo P. When orexins meet cannabinoids: bidirectional functional interactions. Biochem Pharmacol. 2018;157:43-50.

DOI: 10.1016/j.bcp.2018.08.040.

Jäntti MH, Mandrika I, Kukkonen JP. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors. Biochem Biophys Res Commun. 2014;445(2):486-490.

DOI: 10.1016/j.bbrc.2014.02.026.

Taslimi Z, Haghparast A, Hassanpour-Ezatti M, Safari MS. Chemical stimulation of the lateral hypothalamus induces conditioned place preference in rats: Involvement of OX1 and CB1 receptors in the ventral tegmental area. Behav Brain Res. 2011;217(1):41-46.

DOI: 10.1016/j.bbr.2010.10.007.

Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. San Diego: Oxford: Academic Press; 2007. pp. 62.

Dehkordi O, Rose JE, Dávila-García MI, Millis RM, Mirzaei SA, Manaye KF, et al. Neuroanatomical relationships between orexin/hypocretin-containing neurons/nerve fibers and nicotine-induced c-fos-activated cells of the reward-addiction neurocircuitry. J Alcohol Drug Depend. 2017;5(4):273-289.

DOI: 10.4172/2329-6488.1000273.

LeSage MG, Perry JL, Kotz CM, Shelley D, Corrigall WA. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology (Berl). 2010;209(2):203-212.

DOI: 10.1007/s00213-010-1792-0.

Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A. 2008;105(49):19480-19485.

DOI: 10.1073/pnas.0808023105.

Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, et al. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psychiatry. 2015;6:41-52.

DOI: 10.3389/fpsyt.2015.00041.

Kodas E, Cohen C, Louis C, Griebel G. Cortico-limbic circuitry for conditioned nicotine-seeking behavior in rats involves endocannabinoid signaling. Psychopharmacology (Berl). 2007;194(2):161-171.

DOI: 10.1007/s00213-007-0813-0.

Azizi F, Fartootzadeh R, Alaei H, Reisi P. Electrophysiological Study of the response of ventral tegmental area non-dopaminergic neurons to nicotine after concurrent blockade of orexin receptor-2 and cannabinoid receptors-1. Brain Res. 2019;1719:176-182.

DOI: 10.1016/j.brainres.2019.05.042.

Marcus JN, Elmquist JK. Orexin projections and localization of orexin receptors. The orexin/hypocretin system: Springer; 2006. pp. 21-43.

DOI: 10.1385/1-59259-950-8:21.

Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3):389-462.

DOI: 10.1124/pr.58.3.2.

Morra JT, Glick SD, Cheer JF. Neural encoding of psychomotor activation in the nucleus accumbens core, but not the shell, requires cannabinoid receptor signaling. J Neurosci. 2010;30(14):5102-5107.

DOI: 10.1523/JNEUROSCI.5335-09.2010.

Azizi P, Haghparast A, Hassanpour-Ezatti M. Effects of CB1 receptor antagonist within the nucleus accumbens on the acquisition and expression of morphine-induced conditioned place preference in morphine-sensitized rats. Behav Brain Res. 2009;197(1):119-124.

DOI: 10.1016/j.bbr.2008.08.009.

Pacher P, Mechoulam R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res. 2011;50(2):193-211.

DOI: 10.1016/j.plipres.2011.01.001.

Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO. Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci. 2011;31(21):7811-7816.

DOI: 10.1523/JNEUROSCI.1504-11.2011.

Flores Á, Maldonado R, Berrendero F. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far. Front Neurosci. 2013;7:256-272.

DOI: 10.3389/fnins.2013.00256.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.