Chitosan/tripolyphosphate nanoparticles in active and passive microchannels

Mona Akbari , Zohreh Rahimi , Masoud Rahimi


Background and purpose: In recent years, the interest in chitosan nanoparticles has increased due to their application, especially in drug delivery. The main aim of this work was to find a suitable method for simulating pharmaceutical nanoparticles with computational fluid dynamics (CFD) modeling and use it for understanding the process of nanoparticle formation in different types of microchannels.

Experimental approach: Active and passive microchannels were compared to find the advantages and disadvantages of each system. Twenty-eight experiments were done on microchannels to quantify the effect of 4 parameters and their interactions on the size and polydispersity index (PDI) of nanoparticles. CFD was implemented by coupling reactive kinetics and the population balance method to simulate the synthesis of chitosan/tripolyphosphate nanoparticles in the microchannel.

Findings/Results: The passive microchannel had the best performance for nanoparticle production. The most uniform microspheres and the narrowest standard deviation (124.3 nm, PDI = 0.112) were achieved using passive microchannel. Compared to the active microchannel, the size and PDI of the nanoparticles were 28.7% and 70.5% higher for active microchannels, and 55.43% and 105.3% higher for simple microchannels, respectively. Experimental results confirmed the validity of CFD modeling. The growth and nucleation rates were determined using the reaction equation of chitosan and tripolyphosphate.

Conclusion and implications: CFD modeling by the proposed method can play an important role in the prediction of the size and PDI of chitosan/tripolyphosphate nanoparticles in the same condition and provide a new perspective for studying the production of nanoparticles by numerical methods.




CFD modeling; Chitosan; Microchannel; Nanoparticles; Population balance method.

Full Text:



Bijari N, Ghobadi S, Derakhshandeh K. β-lactoglobulin-irinotecan inclusion complex as a new targeted nanocarrier for colorectal cancer cells. Res Pharm Sci. 2019;14(3):216-227.

DOI: 10.4103/1735-5362.258488.

Mirzaei M. Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int J Nano Dimens. 2013;3(3):175-179.

DOI: 10.7508/IJND.2012.03.001.

Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015;10(1):1-16.

Mokhtari A, Harismah K, Mirzaei M. Covalent addition of chitosan to graphene sheets: density functional theory explorations of quadrupole coupling constants. Superlattices Microstruct. 2015;88:56-61.

DOI: 10.1016/j.spmi.2015.08.031.

Amoozgar Z, Park J, Lin Q, Yeo Y. PH-responsive and macrophage evading low molecular weight chitosan coated nanoparticles for tumor-specific drug delivery. Res Pharm Sci. 2012;7(5):S991.

Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H, et al. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39(9):1644-1667.

DOI: 10.1016/j.progpolymsci.2014.02.008.

Bugnicourt L, Alcouffe P, Ladavière C. Elaboration of chitosan nanoparticles: favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects. Colloids Surf A Physicochem Eng Asp. 2014;457:476-486.

DOI: 10.1016/j.colsurfa.2014.06.029.

Nasiri M, Azadi A, Hamidi M. Preparation of chitosan nanoparticles loaded by tramadol using ionic gelation method. Res Pharm Sci. 2012;7(5):S254.

Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16-20.

DOI: 10.1021/nn900002m.

Patil A, Mishra V, Thakur S, Riyaz B, Kaur A, Khursheed R, et al. Nanotechnology derived nanotools in biomedical perspectives: an update. Curr Nanosci. 2019;15(2):137-146.

DOI: 10.2174/1573413714666180426112851.

Faryadi M, Rahimi M, Akbari M. Process modeling and optimization of Rhodamine B dye ozonation in a novel microreactor equipped with high frequency ultrasound wave. Korean J Chem Eng. 2016;33(3):922-933.

DOI: 10.1007/s11814-015-0188-6.

Rahimi M, Aghel B, Hatamifar B, Akbari M, Alsairafi A. CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor. Chem Eng Process. 2014;86:36-46.

DOI: 10.1016/j.cep.2014.10.006.

Rahimi M, Akbari M, Parsamoghadam MA, Alsairafi AA. CFD study on effect of channel confluence angle on fluid flow pattern in asymmetrical shaped microchannels. Comput Chem Eng. 2015;73:172-182.

DOI: 10.1016/j.compchemeng.2014.12.007.

Akbari M, Rahimi M, Fattahi A. Evaluation of microparticles formation by external gelationin a microfluidic system. Chem Eng Process. 2017;117:171-178.

DOI: 10.1016/j.cep.2017.04.004.

Shokoohinia P, Hajialyani M, Sadrjavadi K, Akbari M, Rahimi M, Khaledian S, et al. Microfluidic-assisted preparation of PLGA nanoparticles for drug delivery purposes: experimental study and computational fluid dynamic simulation. Res Pharm Sci. 2019;14(5):459-470.

DOI: 10.4103/1735-5362.268207.

Akbari M, Rahimi M, Faryadi M. Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves. Chin J Chem Eng. 2017;25(9):1143-1152.

DOI: 10.1016/j.cjche.2017.03.010.

Alvandimanesh A, Sadrjavadi K, Akbari M, Fattahi A. Optimization of de-esterified tragacanth microcapsules by computational fluid dynamic and the Taguchi design with purpose of the cell encapsulation. Int J Biol Macromol. 2017;105(Pt 1):17-26.

DOI: 10.1016/j.ijbiomac.2017.06.059.

Jafarifar E, Hajialyani M, Akbari M, Rahimi M, Shokoohinia Y, Fattahi A. Preparation of a reproducible long-acting formulation of risperidone-loaded PLGA microspheres using microfluidic method. Pharm Dev Technol. 2017;22(6):836-843.

DOI: 10.1080/10837450.2016.1221426.

Ansari M, Moradi S, Shahlaei M. A molecular dynamics simulation study on the mechanism of loading of gemcitabine and camptothecin in poly lactic-co-glycolic acid as a nano drug delivery system. J Mol Liq. 2018;269:110-118.

DOI: 10.1016/j.molliq.2018.08.032.

Moradi S, Hosseini E, Abdoli M, Khani S, Shahlaei M. Comparative molecular dynamic simulation study on the use of chitosan for temperature stabilization of interferon αII. Carbohydr Polym. 2019;203:52-59.

DOI: 10.1016/j.carbpol.2018.09.032.

Moradi S, Taran M, Mohajeri P, Sadrjavadi K, Sarrami F, Karton A, et al. Study of dual encapsulation possibility of hydrophobic and hydrophilic drugs into a nanocarrier based on bio-polymer coated graphene oxide using density functional theory, molecular dynamics simulation and experimental methods. J Mol Liq. 2018;262:204-217.

DOI: 10.1016/j.molliq.2018.04.089.

Molaeian M, Davood A, Mirzaei M. Non-covalent interactions of N-(4-carboxyphenyl) phthalimide with CNTs. Adv J Chem B. 2020;2(1):39-45.

DOI: 10.33945/SAMI/AJCB.2020.1.7

Wan B, Ring TA. Verification of SMOM and QMOM population balance modeling in CFD code using analytical solutions for batch particulate processes. China Particuology. 2006;4(5):243-249.

DOI: 10.1016/S1672-2515(07)60268-1.

Jones A, Rigopoulos S, Zauner R. Crystallization and precipitation engineering. Comput Chem Eng. 2005;29(6):1159-1166.

DOI: 10.1016/j.compchemeng.2005.02.022.

de Carvalho FG, Magalhães TC, Teixeira NM, Gondim BLC, Carlo HL, dos Santos RL, et al. Synthesis and characterization of TPP/chitosan nanoparticles: colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater Sci Eng C. 2019:109885,1-33.

DOI: 10.1016/j.msec.2019.109885.

Pessoa AC, Sipoli CC, Lucimara G. Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab Chip. 2017;17(13):2281-2293.

DOI: 10.1039/C7LC00291B.

Majedi FS, Hasani‐Sadrabadi MM, VanDersarl JJ, Mokarram N, Hojjati‐Emami S, Dashtimoghadam E, et al. On‐chip fabrication of paclitaxel‐loaded chitosan nanoparticles for cancer therapeutics. Adv Mater Interfaces. 2014;24(4):432-441.

DOI: 10.1002/adfm.201301628.

Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B. Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer. 2013;54(18):4972-4979.

DOI: 10.1016/j.polymer.2013.07.022.

Kamat V, Marathe I, Ghormade V, Bodas D, Paknikar K. Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor. ACS Appl Mater Interfaces. 2015;7(41):22839-22847.

DOI: 10.1021/acsami.5b05100.

Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997;14(10):1431-1436.

DOI: 10.1023/a:1012128907225.

Bagheri H, Hashemipour H, Ghader S. Population balance modeling: application in nanoparticle formation through rapid expansion of supercritical solution. Comput Part Mech. 2019;6(4):721-737.

DOI: 10.1007/s40571-019-00257-w.

Shang X, Wan MP, Ng BF, Ding S. A CFD-sectional algorithm for population balance equation coupled with multi-dimensional flow dynamics. Powder Technol. 2020;362:111-125.

Technol. 2020;362:111-125.

DOI: 10.1016/j.powtec.2019.11.084.

Hyun S, Lee DR, Loh BG. Investigation of convective heat transfer augmentation using acoustic streaming generated by ultrasonic vibrations. Int J Heat Mass Transf. 2005;48(3-4):703-718.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.048.

Zhang J, Wang K, Lu Y, Luo G. Characterization and modeling of micromixing performance in micropore dispersion reactors. Chem Eng Process. 2010;49(7):740-747.

DOI: 10.1016/j.cep.2009.10.009.

Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44(2-3):65-73.

DOI: 10.1016/j.colsurfb.2005.06.001


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.