Protective effects of a standardized extract of Iris germanica on pancreas and liver in streptozotocin-induced diabetic rats

Mohammad Reza Mahdinezhad , Sara Hooshmand, Mohammad Soukhtanloo, Shirin Taraz Jamshid, Sajad Ehtiati, Ahmad Ghorbani

Abstract


Background and purpose: Previous studies have shown the antioxidant, anti-inflammatory, immunomodulatory, and hypolipidemic activities of Iris germanica. The aim of the present study was to evaluate the protective effects of hydroalcoholic extract of Iris germanica rhizomes on streptozotocin-induced diabetic rats.

Experimental approach: Twenty-four male Wistar rats were randomly assigned into four groups including a normal control group, diabetic control group, diabetic groups treated for 4 weeks with 100 and 200 mg/kg/day of the Iris germanica extract (IGE).

Findings/Results: Induction of diabetes significantly decreased the body weight gain and considerably increased the serum levels of glucose, triglyceride, blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). Diabetes also diminished the antioxidant capacity of the liver (decrease of thiol groups) and significantly degenerated pancreatic islands. The IGE at both doses of 100 and 200 mg/kg significantly reduced the levels of glucose, triglyceride, AST, ALT, and ALP. Moreover, IGE increased the total antioxidant capacity of the liver and ameliorated pancreatic island morphology. The extract had no significant effect on body weight and BUN level.

Conclusion and implication: These findings suggest that Iris germanica rhizomes inhibits the progression of hyperglycemia and hypertriglyceridemia and has protective effects against diabetes-induced injury of the liver and pancreas. Therefore, this plant has the potential to be used as a natural product for controlling diabetes.

 

 


Keywords


Diabetes; Glucose; Iris germanica; Lipids; Oxidative stress.

Full Text:

PDF

References


Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon). 2014;42(12):698-702.

DOI: 10.1016/j.mpmed.2014.09.007.

Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;371(16):1514-1523.

DOI: 10.1056/NEJMoa1310799.

Avogaro A, Fadini GP. Microvascular complications in diabetes: a growing concern for cardiologists. Int J Cardiol. 2019;291:29-35.

DOI: 10.1016/j.ijcard.2019.02.030.

Fatima M, Sadeeqa S, Nazir S. Metformin and its gastrointestinal problems: a review. Biomed Res. 2018;29(11):2285-2289.

DOI: 10.4066/biomedicalresearch.40-18-526.

Ramkumar S, Raghunath A, Raghunath S. Statin therapy: review of safety and potential side effects. Acta Cardiol Sin. 2016;32(6):631-639.

DOI: 10.6515/acs20160611a.

Grossman LD, Roscoe R, Shack AR. Complementary and alternative medicine for diabetes. Can J Diabetes. 2018;42:S154-S161.

DOI: 10.1016/j.jcjd.2017.10.023.

El-Tantawy WH, Temraz A. Management of diabetes using herbal extracts. Arch Physiol Biochem. 2018;124(5):383-389.

DOI: 10.1080/13813455.2017.1419493.

Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med. 2011;17(8):563-574.

DOI: 10.1007/s11655-011-0810-3.

Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-312.

DOI: 10.1016/j.biopha.2017.10.001.

Basgedik B, Ugur A, Sarac N. Antimicrobial, antioxidant, antimutagenic activities, and phenolic compounds of Iris germanica. Ind Crops Prod. 2014;61:526-530.

DOI: 10.1016/j.indcrop.2014.07.022.

Nazir N, Koul S, Qurishi MA, Taneja SC, Ahmad SF, Khan B, et al. Immunomodulatory activity of isoflavones isolated from Iris germanica (Iridaceae) on T-lymphocytes and cytokines. Phytother Res. 2009;23(3):428-433.

DOI: 10.1002/ptr.2683.

Nadaroğlu H, Demir Y, Demir N. Antioxidant and radical scavenging properties of Iris germanica. Pharm Chem J. 2007;41:409-415.

DOI: 10.1007/s11094-007-0089-z.

Rahman A, Nasim S, Baig I, Jalil S, Orhan I, Sener B, et al. Anti-inflammatory isoflavonoids from the rhizomes of Iris germanica. J Ethnopharmacol. 2003;86(2-3):177-180.

DOI: 10.1016/s0378-8741(03)00055-2.

Choudhary MI, Naheed S, Jalil S, Alam JM, Rahman A. Effects of ethanolic extract of Iris germanica on lipid profile of rats fed on a high-fat diet. J Ethnopharmacol. 2005;98(1-2):217-220.

DOI: 10.1016/j.jep.2005.01.013.

Ibrahim S, Al-Ahdal A, Khedr A, Mohamed G. Antioxidant α-amylase inhibitors flavonoids from Iris germanica rhizomes. Rev Bras Farmacogn. 2017;27(2):170-174.

DOI: 10.1016/j.bjp.2016.10.001.

Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017;86:605-611.

DOI: 10.1016/j.biopha.2016.12.059.

Tefera MM, Altaye BM, Yimer EM, Berhe DF, Bekele ST. Antidiabetic effect of germinated Lens culinaris medik seed extract in streptozotocin-induced diabetic mice. J Exp Pharmacol. 2020;12:39-45.

DOI: 10.2147/JEP.S228834.

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-661.

DOI: 10.1096/fj.07-9574LSF.

Lenzen S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226.

DOI: 10.1007/s00125-007-0886-7.

Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947-957.

DOI: 10.1016/j.biopha.2018.12.127.

Ullah F, Ayaz M, Sadiq A, Hussain A, Ahmad S, Imran M, et al. Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. Nat Prod Res. 2016;30(12):1440-1444.

DOI: 10.1080/14786419.2015.1057585.

Ahmad W, Suresh D, Khan M, Khalid S. Effect of aqueous extract of Iris ensata Thunb root on normal and streptozotocin induced diabetic rabbits. Adv Pharmacol Toxicol. 2012;13(2):19-25.

Yao YS, Li TD, Zeng ZH. Mechanisms underlying direct actions of hyperlipidemia on myocardium: an updated review. Lipids Health Dis. 2020;19(1):23-28.

DOI: 10.1186/s12944-019-1171-8.

Ahangarpour A, Shabani R, Farbood Y. The effect of betulinic acid on leptin, adiponectin, hepatic enzyme levels and lipid profiles in streptozotocin-nicotinamide-induced diabetic mice. Res Pharm Sci. 2018;13(2):142-148.

DOI: 10.4103/1735-5362.223796.

Malenica M, Prnjavorac B, Causevic A, Dujic T, Bego T, Semiz S. Use of databases for early recognition of risk of diabetic complication by analysis of liver enzymes in type 2 diabetes mellitus. Acta Inform Med. 2016;24(2):90-93.

DOI: 10.5455/aim.2016.24.90-93.

Forlani G, Di Bonito P, Mannucci E, Capaldo B, Genovese S, Orrasch M, et al. Prevalence of elevated liver enzymes in Type 2 diabetes mellitus and its association with the metabolic syndrome. J Endocrinol Investig. 2008;31(2):146-152.

DOI: 10.1007/BF03345581.

Sedlak L, Wojnar W, Zych M, Wyględowska-Promieńska D, Mrukwa-Kominek E, Kaczmarczyk-Sedlak I. Effect of resveratrol, a dietary-derived polyphenol, on the oxidative stress and polyol pathway in the lens of rats with streptozotocin-induced diabetes. Nutrients. 2018;10(10):1423-1438.

DOI: 10.3390/nu10101423.

Samimi F, Baazm M, Eftekhar E, Rajabi S, Goodarzi MT, Jalali Mashayekhi F. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci. 2019;14(6):524-533.

DOI: 10.4103/1735-5362.272561.

Janahmadi Z, Nekooeian AA, Mozafari M. Hydroalcoholic extract of Allium eriophyllum leaves attenuates cardiac impairment in rats with simultaneous type 2 diabetes and renal hypertension. Res Pharm Sci. 2015;10(2):125-133.

Sadi G, Şahin G, Bostanci A. Modulation of renal insulin signaling pathway and antioxidant enzymes with streptozotocin-induced diabetes: effects of resveratrol. Medicina (Kaunas). 2019;55(1):3-14.

DOI: 10.3390/medicina55010003.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.