Synthesis, antioxidant activity, and density functional theory study of some novel 4-[(benzo[d]thiazol-2-ylimino)methyl]phenol derivatives: a comparative approach for the explanation of their radical scavenging activities

Mohammad hossein Asgarshamsi , Afshin Fassihi , Farshid Hassanzadeh, Lotfollah Saghaei, Ahmad Movahedian Attar, Hossein Mohammad-Beigi


Background and purpose: Radicals produced by Fenton and Haber-Weiss reactions play detrimental roles in our body. Some oxidized proteins as toxic configurations are identified in amyloid-β deposits. These deposits mostly occur in conditions, such as Alzheimer’s disease. Here, we report the synthesis, evaluation of the antioxidant activity, and implementation of density functional theory (DFT) calculations of some4-[(benzo[d]thiazol-2-ylimino) methyl]phenol derivatives. The aim of this study was to provide a comparative theoretical-experimental approach to explain the antioxidant activities of the compounds.

Experimental approach: Compounds were synthesized by the reaction between para hydroxybenzaldehyde and aminobenzothiazole derivatives. The scavenging activity of the compounds was evaluated. Various electronic and energetic descriptors such as high occupied molecular orbital and low unoccupied molecular orbital energy gaps, bonding dissociation enthalpy of OH bond, ionization potential, electron affinity, hardness, softness, and spin density of the radical and neutral species were calculated. DFT calculations with B3LYP hybrid functional and 6-311++ G** basis set in the polarizable continuum model were utilized to obtain these descriptors.

Findings/Results: Ascorbic acid showed the best DPPH scavenging activity. However, 4d and 4c showed promising antioxidant activity. The values of EHOMO for 4c and 4d were closer to zero, thus, they showed the best scavenging activities. The computational results were in accordance with the experimental ones. The energetic descriptors indicated that the sequential proton loss-electron transfer mechanism is preferred over other mechanisms.

Conclusion and implication: Antioxidant activity of 4-[(Benzo[d]thiazol-2-ylimino) methyl]phenol derivatives confirmed by experimental and theoretical documents proves them as novel antioxidants against amyloid-β based disease.




Aminobenzothiazole; Amyloid-β; Antioxidant; Density functional theory.

Full Text:



Das TK, Wati MR, Fatima-Shad K. Oxidative stress gated by Fenton and Haber Weiss reactions and its association with Alzheimer’s disease. Arch Neurosci. 2015;2(2):e20078.

DOI: 10.5812/archneurosci.20078.

Luan S, Yun X, Rao W, Xiao C, Xu Z, Lang J, et al. Emamectin benzoate induces ROS-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cells. Chem Biol Interact. 2017;273:90-98.

DOI: 10.1016/j.cbi.2017.06.004.

Sinha MS, Ansell-Schultz A, Civitelli L, Hildesjö C, Larsson M, Lannfelt L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018;136(1):41-56.

DOI: 10.1007/s00401-018-1868-1.

Luo J, Wärmländer SK, Gräslund A, Abrahams JP. Cross-interactions between the Alzheimer disease amyloid-β peptide and other amyloid proteins: a further aspect of the amyloid cascade hypothesis. J Biol Chem. 2016;291(32):16485-16493.

DOI: 10.1074/jbc.R116.714576.

Bredesen DE. Metabolic profiling distinguishes three subtypes of Alzheimer's disease. Aging (Albany NY). 2015;7(8):595-600.

DOI: 10.18632/aging.100801.

Strodel B, Coskuner-Weber O. Transition metal ion interactions with disordered amyloid-β peptides in the pathogenesis of alzheimer’s disease: insights from computational chemistry studies. J Chem Inf Model. 2019;59(5):1782-1805.

DOI: 10.1021/acs.jcim.8b00983.

Lu C, Guo Y, Li J, Yao M, Liao Q, Xie Z, et al. Design, synthesis, and evaluation of resveratrol derivatives as Aß1-42 aggregation inhibitors, antioxidants, and neuroprotective agents. Bioorg Med Chem Lett. 2012;22(24):7683-7687.

DOI: 10.1016/j.bmcl.2012.09.105.

Mishra CB, Manral A, Kumari S, Saini V, Tiwari M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease. Bioorg Med Chem. 2016;24(16):3829-3841.

DOI: 10.1016/j.bmc.2016.06.027.

Xue C, Lin TY, Chang D, Guo Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4(1):160696,1-12.

DOI: 10.1098/rsos.160696.

Benayahoum A, Amira-Guebailia H, Houache O. A DFT method for the study of the antioxidant action mechanism of resveratrol derivatives. J Mol Model. 2013;19(6):2285-2298.

DOI: 10.1007/s00894-013-1770-7.

Peerannawar S, Horton W, Kokel A, Török F, Török M, Török B.. Theoretical and experimental analysis of the antioxidant features of diarylhydrazonees. Struct Chem. 2017;28(2):391-402.DOI: org/10.1007/s11224-016-0867-x.

Jimonet P, Audiau F, Barreau M, Blanchard JC, Boireau A, Bour Y, et al. Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J Med Chem. 1999;42(15):2828-2843.

DOI: 10.1021/jm980202u.

Tonelli A, Candiani A, Sozzi M, Zucchelli A, Foresti R, Dall’Asta C, et al. The geek and the chemist: antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sens Actuators B Chem. 2019;282:559-566.

DOI: 10.1016/j.snb.2018.11.019.

Chong DP. MP2 or B3LYP: computed bond distances compared with CCSD (T)/cc-pVQZ. Can J Chem. 2018;96(3):336-339.

DOI: 10.1139/cjc-2017-0651.

Gaussian 03, Revision C.02, Frisch M, Truck G,Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian Inc.,Wallingford CT,2004.

Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food antioxidants: chemical insights at the molecular level. Annu Rev Food Sci Technol. 2016;7:335-352.

DOI: 10.1146/annurev-food-041715-033206.

Temel E, Alaşalvar C, Gökçe H, Güder A, Albayrak Ç, Alpaslan YB, et al. DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino) methyl] phenol. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(Part B):534-546.

DOI: 10.1016/j.saa.2014.09.067.

Choudhary V, Bhatt A, Dash D, Sharma N. DFT calculations on molecular structures, HOMO-LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. J Comput Chem. 2019;40(27):2354-2363.

DOI: 10.1002/jcc.26012.

Nazifi SMR, Asgharshamsi MH, Dehkordi MM, Zborowski KK. Antioxidant properties of Aloe vera components: a DFT theoretical evaluation. Free Radic Res. 2019;53(8):922-931.

DOI: 10.1080/10715762.2019.1648798.

Marković Z, Milenković D, Đorović J, Marković JMD, Stepanić V, Lučić B, et al. PM6 and DFT study of free radical scavenging activity of morin. Food Chem. 2012;134(4):1754-1760.

DOI: 10.1016/j.foodchem.2012.03.124.

Boulebd H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C-H bond vs. O-H bond. Free Radic Res. 2019;53(11-12):1125-1134.

DOI: 10.1080/10715762.2019.1690652.

Ali HM, Ali IH. A DFT and QSAR study of the role of hydroxyl group, charge and unpaired-electron distribution in anthocyanidin radical stabilization and antioxidant activity. Med Chem Res. 2017;26:2666-2674.

DOI: 10.1007/s00044-017-1964-0.

Alishahi N, Nasr‐Esfahani M, Mohammadpoor‐Baltork I, Tangestaninejad S, Mirkhani V, Moghadam M. Nicotine‐based ionic liquid supported on magnetic nanoparticles: an efficient and recyclable catalyst for selective one‐pot synthesis of mono‐and bis‐4H‐pyrimido [2,1‐b] benzothiazoles. Appl Organometal Chem. 2020;34(8):e5681,1-14.

DOI: 10.1002/aoc.5681.

Cao H, Pan X, Li C, Zhou C, Deng F, Li T. Density functional theory calculations for resveratrol. Bioorg Med Chem Lett. 2003;13(11):1869-1871.

DOI: 10.1016/s0960-894x(03)00283-x.

Lu L, Zhu S, Zhang H, Zhang S. Improvement of antioxidative activity of resveratrol by elongating conjugated chain: a DFT theoretical study. Comput Theor Chem. 2013;1019:39-47.

DOI: 10.1016/j.comptc.2013.06.019.

Sadasivam K, Kumaresan R. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds. Mol Phys. 2011;109(6):839-852.

DOI: 10.1080/00268976.2011.556576.

Anouar EH, Shah SAA, Hassan NB, Moussaoui NE, Ahmad R, Zulkefeli M, et al. Antioxidant activity of hispidin oligomers from medicinal fungi: a DFT study. Molecules. 2014;19(3):3489-3507.

DOI: 10.3390/molecules19033489.

Samimi F, Baazm M, Eftekhari E, Rajabi S, Goodarzi MT, Jalali Mashayekhi F. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci. 2019;14(6):524-533.

DOI: 10.4103/1735-5362.272561

Sadeghi M, Safaiean L, Aghaye Ghazvini M, Ramezani M. Evaluation and fibrinolytic and antioxidant effect of Allium affine hydrochloric extract. Res Pharm Sci.2017;12(4):299-306.

DOI: 10.4103/1735-5362.212047.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.