Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis

Nilesh Kumar Mitra , Kong Yu Xuan, Charmaine Caryn Teo, Ng Xian-Zhuang, Anudeep Singh, Jestin Chellian


Background and Purpose: Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and axonal loss. Quantitative estimation of behavioral, locomotor, and histological changes following the use of alpha-tocopherol (AT) in the animal model of MS have not been reported. The present study was planned to evaluate whether AT can improve sensorimotor dysfunction and reduce demyelination in the cuprizone (CPZ)-induced rat model of MS.

Experimental approach: Female Sprague-Dawley rats (8 weeks) were fed with cuprizone diet for 5 weeks followed by intraperitoneal injections of alpha-tocopherol (100 mg/Kg) or PBS for 2 weeks (groups E1 and E2, n = 8). Group C (n = 8) was fed with normal pellets followed by intraperitoneal doses of PBS. Open-field test and beam walking were carried out on every 10th day. The mean area of demyelination in the corpus callosum was quantified in Luxol® fast blue (LFB) stained histological sections of the forebrain. Qualitative grading for relative changes in the stains of myelinated fibers was also done.

Findings/Results: During withdrawal of CPZ, AT treatment increased the average speed by 22% in group E1, compared to group E2 (P < 0.05). The mean time to walk the beam was reduced in group E1 by 2.6% compared to group E2 (P < 0.05). The rearing frequency was increased in group E1 during week 6-7 compared to that in the period of CPZ treatment. The mean area of demyelination in the corpus callosum showed a 12% reduction in group E1 compared to group E2 (P < 0.05).

Conclusion and implications: Short-term AT therapy showed improvement in motor dysfunction and reduction of demyelination in the animal model of MS.




Keywords: Alpha-tocopherol; Cuprizone; Demyelination; Multiple sclerosis; Neuroprotection.

Full Text:



Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19(1):1-10.

DOI: 10.22074/cellj.2016.4867.

Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol. 2011;9(3):409-416.

DOI: 10.2174/157015911796557911.

Love S. Demyelinating diseases. J Clin Pathol. 2006;59(11):1151-1159.

DOI: 10.1136/jcp.2005.031195.

Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133(2):223-244.

DOI: 10.1007/s00401-016-1631-4.

Mitra NK, Bindal U, Eng Hwa W, Chua CL, Tan CY. Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells. Int J Clin Exp Pathol. 2015;8(10):12041-12052.

Torkildsen O, Brunborg LA, Myhr KM, Bø L. The cuprizone model for demyelination. Acta Neurol Scand Suppl. 2008;188:72-76.

DOI: 10.1111/j.1600-0404.2008.01036.x.

Sachs HH, Bercury KK, Popescu DC, Narayanan SP, Macklin WB. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro. 2014;6(5) :1759091414551955,1-16.

DOI: 10.1177/1759091414551955.

Zatta P, Raso M, Zambenedetti P, Wittkowski W, Messori L, Piccioli F, et al. Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cell Mol Life Sci. 2005;62(13):1502-1513.

DOI: 10.1007/s00018-005-5073-8.

Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707-717.

DOI: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q.

Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55(4):458-468.

DOI: 10.1002/ana.20016.

Lassmann H. Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci. 2007;259(1-2):3-6.

DOI: 10.1016/j.jns.2006.08.016.

Ünsal C, ÖzcanM. Neurotoxicity of cuprizone in female and male rats: electrophysiological observations. Neurophysiol. 2018;50:108-115.

DOI: 10.1007/s11062-018-9724-4.

Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, et al. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia. 2009;57(8):807-814.

DOI: 10.1002/glia.20806.

Richards RG, Sampson FC, Beard SM, Tappenden P. A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models. Health Technol Assess. 2002;6(10):1-73.

DOI: 10.3310/hta6100.

Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;(96):e52434,1-6.

DOI: 10.3791/52434.

Luong TN, Carlisle HJ, Southwell A, Patterson PH. Assessment of motor balance and coordination in mice using the balance beam. J Vis Exp. 2011;(49):2376,1-3.

DOI: 10.3791/2376.

EDQM, Council of Europe. The European Pharmacopeia. 5th ed. Supplement 5.1, Strasbourg, France: 2005. pp: 3024.

Abu-Fayyad A, Behery F, Sallam AA, Alqahtani S, Ebrahim H, El Sayed K, et al. PEGylated γ-tocotrienol isomer of vitamin E: Synthesis, characterization, in vitro cytotoxicity, and oral bioavailability. Eur J Pharm Biopharm. 2015;96:185-195.

DOI: 10.1016/j.ejpb.2015.07.022.

Ranard KM, Erdman JW Jr. Effects of dietary RRR α-tocopherol vs all-racemic α-tocopherol on health outcomes. Nutr Rev. 2018;76(3):141-153.

DOI: 10.1093/nutrit/nux067.

Xue H, Ren H, Zhang L, Sun X, Wang W, Zhang S, et al. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells. Iran J Basic Med Sci. 2016;19(5):561-566.

Løken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjørnarå BT, et al. Alpha-tocopherol and MRI outcomes in multiple sclerosis-association and prediction. PLoS One. 2013;8(1):e54417,1-5.

DOI: 10.1371/journal.pone.0054417.

Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson PL, Andersson M. ToxTrac: a fast and robust software for tracking organisms. Methods Ecol Evol. 2018;9(3):460-464.

DOI: 10.1111/2041-210X.12874.

Sturman O, Germain PL, Bohacek J. Exploratory rearing: a context-and stress-sensitive behavior recorded in the open-field test. Stress. 2018;21(5):443-452.

DOI: 10.1080/10253890.2018.1438405.

Swiergiel AH, Dunn AJ. Effects of interleukin-1beta and lipopolysaccharide on behavior of mice in the elevated plus-maze and open field tests. Pharmacol Biochem Behav. 2007;86(4):651-659.

DOI: 10.1016/j.pbb.2007.02.010

Zheng J, Sun X, Ma C, Li BM, Luo F. Voluntary wheel running promotes myelination in the motor cortex through Wnt signaling in mice. Mol Brain. 2019;12:85-94.

DOI: 10.1186/s13041-019-0506-8.

Mitra NK, Nadarajah VD, Siong HH. Effect of concurrent application of heat, swim stress and repeated dermal application of chlorpyrifos on the hippocampal neurons in mice. Folia Neuropathol. 2009;47(1):60-68.

Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, et al. Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol. 2013;33(8):1087-1098.

DOI: 10.1007/s10571-013-9975-y.

Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of multiple sclerosis. Eur J Pharmacol. 2015;759:182-191.

DOI: 10.1016/j.ejphar.2015.03.042.

Mohammadi-Rad M, Ghasemi N, Aliomrani M. Evaluation of apamin effects on myelination process in C57BL/6 mice model of multiple sclerosis. Res Pharm Sci. 2019;14(5):424-431.

DOI: 10.4103/1735-5362.268203.

Pepper RE, Pitman KA, Cullen CL, Young KM. How do cells of the oligodendrocyte lineage affect neuronal circuits to influence motor function, memory and mood? Front Cell Neurosci. 2018;12:399-412.

DOI: 10.3389/fncel.2018.00399.

Silvestroff L, Bartucci S, Pasquini J, Franco P. Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Exp Neurol. 2012;235(1):357-367.

DOI: 10.1016/j.expneurol.2012.02.018.

Murray CA, Lynch MA. Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem. 1998;273(20):12161-12168.

DOI: 10.1074/jbc.273.20.12161.

Lever C, Burton S, O’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci. 2006;17(1-2),111-133.

DOI: 10.1515/revneuro.2006.17.1-2.111.

Crusio WE, Schwegler H, Van Abeelen JH. Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis. Behav Brain Res. 1989;32(1):75-80.

DOI: 10.1016/s0166-4328(89)80074-9.

Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de-and remyelination in the CNS: lessons learned. Front Cell Neurosci. 2014;8:73-96.

DOI: 10.3389/fncel.2014.00073.

Soltani R, Khorvash F, Meidani M, Badri S, Alaei S, Taheri S. Vitamin E in the prevention of vancomycin-induced nephrotoxicity. Res Pharm Sci. 2020;15(2):137-143.

DOI: 10.4103/1735-5362.283813.

Tahan G, Aytac E, Aytekin H, Gunduz F, Dogusoy G, Aydin S, et al. Vitamin E has a dual effect of anti-inflammatory and antioxidant activities in acetic acid-induced ulcerative colitis in rats. Can J Surg. 2011; 54(5):333-338.

DOI: 10.1503/cjs.013610.

Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T. Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol. 2010;30(2):289-299.

DOI: 10.1007/s10571-009-9451-x.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.