Bufo viridis secretions improve anxiety and depression-like behavior following intracerebroventricular injection of amyloid β
Abstract
Background and purpose: Venenum Bufonis is a Chinese traditional medicine produced from the glandular secretions of toads that contain biogenic amines, which have anti-inflammatory properties. The present study aimed to examine the effect of Bufo viridis secretions (BVS) on anxiety and depression-like behavior and hippocampal senile plaques volume in an animal model of Alzheimer’s disease (AD).
Experimental approach: Thirty-eight male Wistar rats were used. AD was induced by amyloid-beta (Aβ1-42)(10 µg/2 µL, intracerebroventricular injection, icv) and then BVS at 20, 40, and 80 mg/kg were injected intraperitoneally (ip) in six equal intervals over 21 days. Anxiety and depression-like behavior were assessed using behavioral tests including open field test (OFT), elevated plus maze (EPM), and forced swimming test (FST) 21 days after the surgery. The volume of senile plaques was assessed based on the Cavalieri principle.
Findings/Results: Results of the OFT showed that the central crossing number and the time in the AD group were significantly decreased compared to the sham group (P ˂ 0.01 and P ˂ 0.001, respectively). Also, the values of these two parameters significantly increased in the AD + BVS80 group than the AD group (P ˂ 0.05 and P ˂ 0.001, respectively). The time spent in the closed arm in the EPM dramatically increased in the AD group compared to the sham group (P ˂ 0.05) and significantly decreased in the AD + BVS80 group compared to the AD group (P ˂ 0.05). Results of the FST indicated that immobility time had a reduction in the AD + BVS20 (P ˂ 0.01), AD + BVS40, and AD + BVS80 groups compared to the AD group (P < 0.001). The volume of senile plaques in the hippocampus showed a reduction in the treatment groups in comparison with the AD group (P < 0.001 for all).
Conclusion and implications: Results revealed that BVS injection could improve symptoms of anxiety and depression and decrease senile plaques in the hippocampus in an animal model of AD.
Keywords
Full Text:
PDFReferences
Cortés N, Andrade V, Maccioni RB. Behavioral and neuropsychiatric disorders in Alzheimer’s disease. J Alzheimers Dis. 2018;63(3):899-910.
DOI: 10.3233/JAD-180005.
Sharma A, Brenner M, Wang P. Potential role of extracellular CIRP in alcohol-induced Alzheimer’s disease. Mol Neurobiol. 2020;57:5000-5010.
DOI: 10.1007/s12035-020-02075-1.
Crews L, Rockenstein E, Masliah E. APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis. Brain Struct Funct. 2010;214(2-3):111-126.
DOI: 10.1007/s00429-009-0232-6.
Xin SH, Tan L, Cao X, Yu JT, Tan L. Clearance of amyloid beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res. 2018;34(3):733-748.
DOI: 10.1007/s12640-018-9895-1.
Mossello E, Boncinelli M, Caleri V, Cavallini MC, Palermo E, Di Bari M, et al. Is antidepressant treatment associated with reduced cognitive decline in Alzheimer’s disease? Dement Geriatr Cogn Disord. 2008;25(4):372-379.
DOI: 10.1159/000121334.
Aznar S, Knudsen GM. Depression and Alzheimer’s disease: is stress the initiating factor in a common neuropathological cascade? J Alzheimers Dis. 2011;23(2):177-193.
DOI: 10.3233/JAD-2010-100390.
Wuwongse S, Chang RCC, Law ACK. The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol. 2010;91(4):362-375.
DOI: 10.1016/j.pneurobio.2010.04.005.
Ryu SH, Jung HY, Lee KJ, Moon SW, Lee DW, Hong N, et al. Incidence and course of depression in patients with Alzheimer’s disease. Psychiatry Investig. 2017;14(3):271-280.
DOI: 10.4306/pi.2017.14.3.271.
Caraci F, Copani A, Nicoletti F, Drago F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur J Pharmacol. 2010;626(1):64-71.
DOI: 10.1016/j.ejphar.2009.10.022.
Leonard BE. Inflammation, depression and dementia: are they connected? Neurochem Res. 2007;32(10):1749-1756.
DOI: 10.1007/s11064-007-9385-y.
Burke SL, Cadet T, Alcide A, O’Driscoll J, Maramaldi P. Psychosocial risk factors and Alzheimer’s disease: the associative effect of depression, sleep disturbance, and anxiety. Aging Ment Heal. 2018;22(12):1577-1584.
DOI: 10.1080/13607863.2017.1387760.
Gradinariu V, Cioanca O, Hritcu L, Trifan A, Gille E, Hancianu M. Comparative efficacy of Ocimum sanctum L. and Ocimum basilicum L. essential oils against amyloid beta (1-42)-induced anxiety and depression in laboratory rats. Phytochem Rev. 2015;14:567-575.
DOI: 10.1007/s11101-014-9389-6.
Justice NJ. The relationship between stress and Alzheimer’s disease. Neurobiol Stress. 2018;8:127-133.
DOI: 10.1016/j.ynstr.2018.04.002.
Nalbantsoy A, Karış M, Yalcin HT, Göçmen B. Biological activities of skin and parotoid gland secretions of bufonid toads (Bufo bufo, Bufo verrucosissimus and Bufotes variabilis) from Turkey. Biomed Pharmacother. 2016;80:298-303.
DOI: 10.1016/j.biopha.2016.03.034.
Wang JY, Chen L, Zheng Z, Wang Q, Guo J, Xu L. Cinobufocini inhibits NF-κB and COX-2 activation induced by TNF-α in lung adenocarcinoma cells. Oncol Rep. 2012;27(5):1619-1624.
DOI: 10.3892/or.2012.1647.
Kim MH, Lyu JH, Lyu SA, Hong SH, Kim WI, Yoon HJ, et al. Inhibitory effect of Chan-Su on the secretion of PGE2 and NO in LPS-stimulated BV2 microglial cells. J Physiol Pathol Korean Med. 2008;22(5):1315-1321.
Oliveira RS, Borges BT, Leal AP, Lailowski MM, Bordon K de CF, Souza VQ de, et al. Chemical and pharmacological screening of Rhinella icterica (Spix 1824) toad parotoid secretion in avian preparations. Toxins (Basel). 2020;12(6):396-416.
DOI: 10.3390/toxins12060396.
Oliveira RS, Leal AP, Ogata B, Moreira de Almeida CG, dos Santos DS, Lorentz LH, et al. Mechanism of Rhinella icterica (Spix, 1824) toad poisoning using in vitro neurobiological preparations. Neurotoxicol. 2018;65:264-271.
DOI: 10.1016/j.neuro.2017.11.006.
Choi MJ, Kim KN, Lee JE, Suh JW, Kim SC, Kwon KR, et al. Effects of Sumsu (Bufonis venenum) pharmacopuncture treatment on depression in mice. J Pharmacopuncture. 2014;17(2):27-33.
DOI: 10.3831/KPI.2014.17.013.
Stöck M, Moritz C, Hickerson M, Frynta D, Dujsebayeva T, Eremchenko V, et al. Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Mol Phylogenet Evol. 2006;41(3):663-689.
DOI: 10.1016/j.ympev.2006.05.026.
Konno N, Hyodo S, Takei Y, Matsuda K, Uchiyama M. Plasma aldosterone, angiotensin II, and arginine vasotocin concentrations in the toad, Bufo marinus, following osmotic treatments. Gen Comp Endocrinol. 2005;140(2):86-93.
DOI: 10.1016/j.ygcen.2004.10.005.
Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. London, UK: Elsevier Academic Press; 2007. pp: 111.
Cetin F, Yazihan N, Dincer S, Akbulut G. The effect of intracerebroventricular injection of beta amyloid peptide (1-42) on caspase-3 activity, lipid peroxidation, nitric oxide and NOS expression in young adult and aged rat brain. Turk Neurosurg. 2013;23(2):144-150.
DOI: 10.5137/1019-5149.JTN.5855-12.1.
Jahani R, Khaledyan D, Jahani A, Jamshidi E, Kamalinejad M, Khoramjouy M, et al. Evaluation and comparison of the antidepressant-like activity of Artemisia dracunculus and Stachys lavandulifolia ethanolic extracts: an in vivo study. Res Pharm Sci. 2019;14(6):544-553.
DOI: 10.4103/1735-5362.272563.
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer’s disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One. 2017;12(9):e0185102,1-24.
DOI: 10.1371/journal.pone.0185102.
Hosseini M, Zakeri S, Khoshdast S, Yousefian FT, Rastegar M, Vafaee F, et al. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide-Induced depression like behavior in rats. J Pharm Bioallied Sci. 2012;4(3):219-225.
DOI: 10.4103/0975-7406.99052.
Amiresmaeili A, Roohollahi S, Mostafavi A, Askari N. Effects of oregano essential oil on brain TLR4 and TLR2 gene expression and depressive-like behavior in a rat model. Res Pharm Sci;13(2):130-141.
DOI: 10.4103/1735-5362.223795.
Taipa R, Pinho J, Melo-Pires M. Clinico-pathological correlations of the most common neurodegenerative dementias. Front Neurol. 2012;3:68-80.
DOI: 10.3389/fneur.2012.00068.
Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shirzad S, Ghazavi H, et al. Insulin-like growth factor 2 (IGF-2) regulates neuronal density and IGF-2 distribution following hippocampal intracerebral hemorrhage. J Stroke Cerebrovasc Dis. 2020;29(10):105128,1-10.
DOI: 10.1016/j.jstrokecerebrovasdis.2020.105128.
Soodi M, Moradi S, Sharifzadeh M, Saeidnia S. Satureja bachtiarica methanolic extract ameliorate beta amyloid induced memory impairment. Res Pharm Sci. 2012;7(5);S802.
Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiol Aging. 2013;34(5):1426-1439.
DOI: 10.1016/j.neurobiolaging.2012.11.015.
Viel TA, Caetano AL, Nasello AG, Lancelotti CL, Nunes VA, Araujo MS, et al. Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1-40 peptide in rats. Neurobiol Aging. 2008;29(12):1805-1814.
DOI: 10.1016/j.neurobiolaging.2007.04.019.
Guiard BP, El Mansari M, Merali Z, Blier P. Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol. 2008;11(5):625-639.
DOI: 10.1017/S1461145707008383.
Hu Y, Yu Z, Yang ZJ, Zhu G, Fong W. Comprehensive chemical analysis of Venenum Bufonis by using liquid chromatography/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2011;56(2):210-220.
DOI: 10.1016/j.jpba.2011.05.014.
Bi QR, Hou JJ, Qi P, Ma CH, Shen Y, Feng R, et al. Venenum Bufonis induces rat neuroinflammation by activiating NF-κB pathway and attenuation of BDNF. J Ethnopharmacol. 2016;186:103-110.
DOI: 10.1016/j.jep.2016.03.049.
Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD. The mouse forced swim test. J Vis Exp. 2012;(59):e3638,1-5.
DOI: 10.3791/3638.
Gomez‐Isla T, Spires T, De Calignon A, Hyman BT. Neuropathology of Alzheimer’s disease. Handbook of clinical neurology. 2008;89:233-243.
DOI: 10.1016/S0072-9752(07)01222-5.
Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12(11):988-1000.
DOI: 10.1038/sj.mp.4002006.
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB /JNK/GSK3β signaling pathway. Nanomedicine Nanotechnology, Biol Med. 2017;13(8):2533-2544.
DOI: 10.1016/j.nano.2017.06.022.
Jones SV, Kounatidis I. Nuclear factor-kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol. 2017;8:1805,1-9.
DOI: 10.3389/fimmu.2017.01805.
Wen L, Huang Y, Xie X, Huang W, Yin J, Lin W, et al. Anti-inflammatory and antinociceptive activities of bufalin in rodents. Mediators Inflamm. 2014;2014:171839,1-9.
DOI: 10.1155/2014/171839.
Yoo WS, Kim J, Lee YW, Yoon DH, Cho CK, Yoo HS. Toxicity studies on secretio bufonis: a traditional supplement in Asia. J Acupunct Meridian Stud. 2009;2(2):159-164.
DOI: 10.1016/S2005-2901(09)60049-2.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.