Bayesian estimation of pharmacokinetic parameters: an important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring

Dion R. Brocks , Dalia A. Hamdy


Bayesian estimation of pharmacokinetic parameters (PKP), as discussed in this review, provides a powerful approach towards the individualization of dosing regimens. The method was first described by Lewis Sheiner and colleagues and it is well suited in clinical environs where few blood fluid measures of drugs are available in the clinic. This makes it a valuable tool in the effective implementation of therapeutic drug monitoring. The principle behind the method is Bayes theorem, which incorporates elements of variability in a priori-known population estimates and variability in the pharmacokinetic parameters, and known errors intrinsic to the assay method used to estimate the blood fluid drug concentrations. This manuscript reviews the Bayesian method. The literature was scanned using Pubmed to provide background into the Bayesian method. An Add-in for Excel program was used to show the ability of the method to estimate PKP using sparse blood fluid concentration vs time data. Using a computer program, the method was able to find reasonable estimates of individual pharmacokinetic parameters, assessed by comparing the estimated data to the true PKP. Education of students in clinical pharmacokinetics is incomplete without some mention and instruction of the Bayesian forecasting method. For a complete understanding, a computer program is needed to demonstrate its utility.


Clinical pharmacology; Dosage regimen design; Pharmacy education; Therapeutic drug monitoring.

Full Text:



Vozeh S, Hillman R, Wandell M, Ludden T, Sheiner L. Computer-assisted drug assay interpretation based on Bayesian estimation of individual pharmacokinetics: application to lidocaine. Ther Drug Monit. 1985;7(1):66-73.

DOI: 10.1097/00007691-198503000-00011.

Crowley JJ, Koup JR, Cusack BJ, Ludden TM, Vestal RE. Evaluation of a proposed method for phenytoin maintenance dose prediction following an intravenous loading dose. Eur J Clin Pharmacol.


DOI: 10.1007/BF00542186.

Beach CL, Farringer JA, Peck CC, Crawford MH, Ludden TM, Clementi WA. Clinical assessment of a two-compartment Bayesian forecasting method for lidocaine. Ther Drug Monit. 1988;10(1):74-79.

Privitera MD, Homan RW, Ludden TM, Peck CC, Vasko MR. Clinical utility of a Bayesian dosing program for phenytoin. Ther Drug Monit. 1989;11(3):285-294.

DOI: 10.1097/00007691-198905000-00011.

Nakashima T, Ohno T, Koido K, Hashimoto H, Terakado H. Accuracy of predicting the vancomycin concentration in Japanese cancer patients by the Sawchuk-Zaske method or Bayesian method. J Oncol Pharm Pract. 2020;26(3):543-548.

DOI: 10.1177/1078155219851834.

Hennig S, Holthouse F, Staatz CE. Comparing dosage adjustment methods for once-daily tobramycin in paediatric and adolescent patients with cystic fibrosis. Clin Pharmacokinet. 2015;54(4):409-421.

DOI: 10.1007/s40262-014-0211-9.

Donagher J, Martin JH, Barras MA. Individualised medicine: why we need Bayesian dosing. Intern Med J. 2017;47(5):593-600.

DOI: 10.1111/imj.13412.

Mehvar R. Development and application of an on-line module for teaching Bayesian forecasting principles in a clinical pharmacokinetics course. Am J Pharm Educ. 2000;64(2):121-125.

DOI: aj640203.

Mehvar R. Estimation of pharmacokinetic parameters based on the patient-adjusted population data. Am J Pharm Educ. 2006;70(5):96,1-8.

DOI: 10.5688/aj700596.

Shammas FV, Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet. 1988;15(2):94-113.

DOI: 10.2165/00003088-198815020-00002.

Tiwari G, Tiwari R. Bioanalytical method validation: an updated review. Pharm Methods. 2010;1(1):25-38.

DOI: 10.4103/2229-4708.72226.

Committee for Medicinal Products for Human Use. Guideline on bioanalytical method validation. London: European Medicines Agency; 2011 [cited 2020 April 15]; EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2**]. Available from:

Bijak J, Bryant J. Bayesian demography 250 years after Bayes. Popul Stud (Camb). 2016;70(1):1-19.

DOI: 10.1080/00324728.2015.1122826.

Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clin Pharmacol Ther. 1979;26(3):294-305.

DOI: 10.1002/cpt1979263294.

Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344-1348.

DOI: 10.1002/jps.2600711209.

Turner RB, Kojiro K, Shephard EA, Won R, Chang E, Chan D, et al. Review and validation of Bayesian dose-optimizing software and equations for calculation of the vancomycin area under the curve in critically Ill patients. Pharmacotherapy. 2018;38(12):1174-1183.

DOI: 10.1002/phar.2191.

Bourne D. Pharmacokinetic software. 2020.

Alsultan A, Abouelkheir M, Alqahtani S, Aljabri A, Somily AM, Alsubaie S, et al. Optimizing vancomycin monitoring in pediatric patients. Pediatr Infect Dis J. 2018;37(9):880-885.

DOI: 10.1097/INF.0000000000001943.

Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306-314.

DOI: 10.1016/j.cmpb.2010.01.007.

Brocks DR. uSIMPK. An Excel for Windows-based simulation program for instruction of basic pharmacokinetics principles to pharmacy students. Comput Methods Programs Biomed. 2015;120(3):154-163.

DOI: 10.1016/j.cmpb.2015.04.006.

Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503-512.

DOI: 10.1007/BF01060893.

Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2):e02042-17,1-12.

DOI: 10.1128/AAC.02042-17.

Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev. 2014;77:50-57.

DOI: 10.1016/j.addr.2014.05.016.

Barraclough KA, Isbel NM, Staatz CE. Evaluation of the mycophenolic acid exposure estimation methods used in the APOMYGERE, FDCC, and Opticept trials. Transplantation. 2010;90(1):44-51.

DOI: 10.1097/TP.0b013e3181e06584.

Chrystyn H, Ellis JW, Mulley BA, Peake MD. The accuracy and stability of Bayesian theophylline predictions. Ther Drug Monit. 1988;10(3):299-305.

DOI: 10.1097/00007691-198803000-00011.

Hurley SF, McNeil JJ. A comparison of the accuracy of a least squares regression, a Bayesian, Chiou's and the steady-state clearance method of individualising theophylline dosage. Clin Pharmacokinet. 1988;14(5):311-320.

DOI: 10.2165/00003088-198814050-00003.

Burton ME, Chow MS, Platt DR, Day RB, Brater DC, Vasko MR. Accuracy of Bayesian and Sawchuk-Zaske dosing methods for gentamicin. Clin Pharm. 1986;5(2):143-149.

Kraus DM, Dusik CM, Rodvold KA, Campbell MM, Kecskes SA. Bayesian forecasting of gentamicin pharmacokinetics in pediatric intensive care unit patients. Pediatr Infect Dis J. 1993;12(9):713-718.

DOI: 10.1097/00006454-199309000-00002.

Rodvold KA, Pryka RD, Kuehl PG, Blum RA, Donahue P. Bayesian forecasting of serum gentamicin concentrations in intensive care patients. Clin Pharmacokinet. 1990;18(5):409-418.

DOI: 10.2165/00003088-199018050-00005.

Kuranari M, Chiba S, Ashikari Y, Kodama Y, Sakata T, Takeyama M. Clearance of phenytoin and valproic acid is affected by a small body weight reduction in an epileptic obese patient: a case study. J Clin Pharm Ther. 1996;21(2):83-87.

DOI: 10.1111/j.1365-2710.1996.tb00005.x.

Boucher BA, Rodman JH, Fabian TC, Cupit GC, Ludden TM, West ME, et al. Disposition of phenytoin in critically ill trauma patients. Clin Pharm. 1987;6(11):881-887.

el Desoky E, Meinshausen J, Buhl K, Engel G, Harings-Kaim A, Drewelow B, et al. Generation of pharmacokinetic data during routine therapeutic drug monitoring: Bayesian approach vs. pharmacokinetic studies. Ther Drug Monit. 1993;15(4):281-288.

DOI: 10.1097/00007691-199308000-00004.

Schumacher GE, Barr JT. Bayesian approaches in pharmacokinetic decision making. Clin Pharm. 1984;3(5):525-530.

Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445-479.

DOI: 10.1007/BF01061728.

Duffull SB, Kirkpatrick CM, Begg EJ. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol.


DOI: 10.1046/j.1365-2125.1997.05341.x.

Oda K, Miyakawa T, Katanoda T, Hashiguchi Y, Iwamura K, Nosaka K, et al. A case of recovery from aphasia following dose reduction of cefepime by bayesian prediction-based therapeutic drug monitoring. J Infect Chemother. 2020;26(5):498-501.

DOI: 10.1016/j.jiac.2019.10.006.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.