Pharmacokinetics of piperine after oral administration of Sahastara remedy capsules in healthy volunteers

Arunporn Itharat , Puritat Kanokkangsadal, Phisit Khemawoot, Preecha Wanichsetakul, Neal M. Davies

Abstract


Background and purpose: To investigate the pharmacokinetics of piperine after single oral doses of capsules containing Sahastara (SHT) remedy dried ethanolic extracts in healthy Thai volunteers.

Experimental approach: Twenty-four healthy volunteers were divided into two dosage groups. They received a single oral dose of SHT remedy extract capsules of 100 or 200 mg. Blood was collected at time intervals of 0, 0.5, 1, 2, 4, 6, 8, 12, 24, and 48 h. Acute clinical safety was monitored by complete physical examination and laboratory tests during the study period. Piperine concentration in blood and urine was determined by liquid chromatography tandem-mass spectrometry.

Findings/Results: No serious adverse events were detected, only one volunteer had abdominal pain that was self-limiting. The pharmacokinetics of piperine following SHT remedy extract capsule administration demonstrated a mean peak concentration (Cmax) of piperine of 3.77 µg/mL and 6.59 µg/mL after dosing with 100 and 200 mg, respectively. Interestingly, a secondary maximum concentration of piperine was observed in this study, which might be related to enterohepatic recirculation. Negligible amounts of unchanged piperine were detected in urine.

Conclusion and implication: The systemic exposure of piperine after SHT remedy ethanolic extract demonstrated dose proportionality after single oral dosing of 100-200 mg. Piperine was detectable in plasma for at least 48 h with evidence of enterohepatic recirculation. Metabolism and excretion profiles of piperine after administration of SHT remedy extract capsule need to be further explored for phytopharmaceutical product development.

 


Keywords


Pharmacokinetics; Piperine; Sahastara remedy.

Full Text:

PDF

References


Kakatum N, Jaiarree N, Makchucit S, Itharat A. Antioxidant and anti-inflammatory activities of Thai medicinal plants in Sahasthara remedy for muscle pain treatment. J Med Assoc Thai. 2012;95(1):S120-S126.

Pinsornsak P, Kanokkangsadal P, Itharat A. The clinical efficacy and safety of the sahastara remedy versus diclofenac in the treatment of osteoarthritis of the knee: a double-blind, randomized, and controlled trial. Evid Based Complement Alternat Med. 2015;2015:103046,1-8.

DOI:10.1155/2015/103046.

Sakpakdeejaroen I, Itharat A. Tablet formulation and stability test of thai traditional remedy for muscle pain treatment called sahasthara. Planta Medica. 2013;79(13):PN95.

DOI:10.1055/s-0033-1352437.

Kanokkangsadal P, Wanichsetakul P, Itharat A. The clinical safety of sahastara remedy ethanolic extract capsules in healthy volunteers. J Med Assoc Thai. 2018;101:1429-1436.

Li C, Wang Q, Ren T, Zhang Y, Lam CWK, Chow MSS, et al. Non-linear pharmacokinetics of piperine and its herb-drug interactions with docetaxel in Sprague-Dawley rats. J Pharm Biomed Anal. 2016;128:286-293.

DOI:10.1016/j.jpba.2016.05.041

Bhat BG, Chandrasekhara N. Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology. 1986;40(1):83-92.

DOI:10.1016/0300-483x(86)90048-x

Suresh D, Srinivasan K. Tissue distribution and elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res. 2010;131:682-691.

Booranasubkajorn S, Huabprasert S, Wattanarangsan J, Chotitham P, Jutasompakorn P, Laohapand T, et al. Vasculoprotective and vasodilatation effects of herbal formula (Sahatsatara) and piperine in spontaneously hypertensive rats. Phytomedicine. 2017;24:148-156.

DOI:10.1016/j.phymed.2016.11.013.

Jumpa-ngern P, Kietinun S, Sakpakdeejaroen I, Cheomung A, Na-Bangchang K. Pharmacokinetics of piperine following single oral dose administration of benjakul formulation in healthy Thai subjects. Afr J Pharm Pharmacol. 2013;7(10):560-566.

DOI: 10.5897/AJPP2013.3469.

Davies NM, Takemoto JK, Brocks DR, Yáñez JA. Multiple peaking phenomena in pharmacokinetic disposition. Clin Pharmacokinet. 2010;49:351-377.

DOI:10.2165/11319320-000000000-00000.

Brocks DR, Davies NM. Lymphatic drug absorption via the enterocytes: pharmacokinetic simulation, modeling, and considerations for optimal drug development. J Pharm Pharm Sci. 2018;21(1s):254s-270s.

DOI: 10.18433/jpps30217.

Liu HL, Luo R, Chen XQ, Ba YY, Zheng L, Guo WW, et al. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC-ESI-MS(n) and UFLC-ESI-MS/MS and their application to Piper nigrum L. Food Chem. 2015;177:191-196.

DOI:10.1016/j.foodchem.2015.01.033.

Liu J, Bi Y, Luo R, Wu X. Simultaneous UFLC-ESI-MS/MS determination of piperine and piperlonguminine in rat plasma after oral administration of alkaloids from Piper longum L.: application to pharmacokinetic studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(27):2885-2890. DOI:10.1016/j.jchromb.2011.08.018.

Gao T, Xue H, Lu L, Zhang T, Han H. Characterization of piperine metabolites in rats by ultra-high-performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(11):901-910.

DOI:10.1002/rcm.7864.

Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther. 2002;302(2): 645-650.

DOI: 10.1124/jpet.102.034728.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.