Effect of orally administered combination of Caulerpa racemosa and Eleutherine americana (Aubl) Merr extracts on phagocytic activity of macrophage

Ermina Pakki , Rosany Tayeb, Usmar Usmar, Ismul Azham Ridwan, Lukman Muslimin

Abstract


Background and purpose: Polysaccharide sulfate is a major active phytochemical constituent of Caulerpa racemosa, whereas the Eleutherine americana (Aubl) Merr has antioxidant properties. The aim of this research was to investigate the combined effect of polysaccharide sulfate that was isolated from C. racemosa and                                    E. americana on the macrophage activity.

Experimental approach: The phenolic contents and antioxidant activities of E. americana extracts in water and various ethanol concentrations were studied using the Folin-Ciocalteu and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) methods, respectively. Polysaccharide sulfate was isolated from C. racemosa by precipitation method. To assess the macrophage activity, mice were treated orally for 14 days with either a combination of polysaccharide sulfate and E. americana 96% ethanol extract at a specific ratio or with each extract alone. Macrophages were isolated and the phagocytic activity was measured by assessing the ability of the macrophages to phagocytose latex particles and nitric oxide (NO) levels were assessed using a colorimetric assay.

Findings / Results: The E. americana crude extract in water exhibited the highest yield (13.04%), compared with the extract in 96% ethanol, which had the highest phenolic content (6.37 ± 0.16 mg/g gallic acid equivalent) and the strongest antioxidant activity (IC50, 22.63 ± 1.09 µg/mL). The combination of extracts, when both extracts were administered at 65:65 mg/kg BW, resulted in the highest increases in phagocytosis activity (62.73 ± 5.77%) and NO levels (16.43 ± 1.37 mmol/L).

Conclusion and implications: The results of this study confirmed the non-specific immunostimulant properties of the combination of polysaccharide sulfate and E. americana and justified their use in traditional medicine. The observed increase in macrophage activity appeared to be correlated with the increased ability of mice to fight infection.


Keywords


Antioxidant; Caulerpa racemosa; Eleutherine americana (Aubl) Merr; Phagocytic; Phenolic content; Polysaccharide sulfate.

Full Text:

PDF

References


Van der Meer JWM. The infectious disease challenges of our time. Front Public Health. 2013;1:7-8.

DOI: 10.3389/fpubh.2013.00007.

Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016;3(1):23-42.

DOI: 10.1177/2049936115622891.

Kallau NHG, Wibawan IWT, Lukman DW, Sudarwanto MB. Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang, Indonesia. J Adv Vet Anim Res. 2018;5(4):388-396.

DOI: 10.5455/javar.2018.e289.

Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev Anti Infect Ther. 2018;16(10):749-761.

DOI: 10.1080/14787210.2018.1522249.

Assis LM, Nedeljkovic M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat. 2017;31:1-14.

DOI: 10.1016/j.drup.2017.03.001.

Arushothy R, Ramasamy H, Hashim R, Raj ASS, Amran F, Samsuddin N, et al. Multidrug-resistant Streptococcus pneumoniae causing invasive pneumococcal disease isolated from a paediatric patient. Int J Infect Dis. 2020;90:219-222.

DOI: 10.1016/j.ijid.2019.10.037.

Mutai WC, Muigai AWT, Waiyaki P, Kariuki S. Multi-drug resistant Salmonella enterica serovar Typhi isolates with reduced susceptibility to ciprofloxacin in Kenya. BMC Microbiol. 2018;18(1):e187,1-5.

DOI: 10.1186/s12866-018-1332-3.

Puzari M, Sharma M, Chetia P. Emergence of antibiotic resistant Shigella species: a matter of concern. J Infect Public Health. 2018;11(4):451-454.

DOI: 10.1016/j.jiph.2017.09.025.

Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang L, Naidu P, et al. Multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae in Canada, 2012-2016. Can Commun Dis Rep. 2019;45(2-3):45-53.

DOI: 10.14745/ccdr.v45i23a01.

Yoon MY, Yoon SS. Disruption of the gut ecosystem by antibiotics. Yonsei Med J. 2018;59(1):4-12.

DOI: 10.3349/ymj.2018.59.1.4.

Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman JH. Immunomodulatory drugs: oral and systemic adverse effects. Med Oral Patol Oral Cir Bucal. 2014;19(1):e24-e31.

DOI: 10.4317/medoral.19087.

Mukarramah M, Wahyuni W, Emilia E. Low fat high protein sausage made from lawi-lawi (Caulerpa racemosa) as a Makassar healthy culinary innovation and alternative foods for children with obesity. Hasanuddin Stud J. 2017;1(1):50-55.

Ji H, Shao H, Zhang C, Hong P, Xiong H. Separation of the polysaccharides in Caulerpa racemosa and their chemical composition and antitumor activity. J Appl Polym Sci. 2008;110(3):1435-1440.

DOI: 10.1002/app.28676.

Ribeiro NA, Abreu TM, Chaves HV, Bezerra MM, Monteiro HSA, Jorge RJB, et al. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflamm Res. 2014;63(7):569-580.

DOI: 10.1007/s00011-014-0728-2.

Moran-Santibanez K, Cruz-Suarez LE, Ricque-Marie D, Robledo D, Freile-Pelegrin Y, Pena-Hernandez MA, et al. Synergistic effects of sulfated polysaccharides from Mexican seaweeds against measles virus. Biomed Res Int. 2016;2016:e8502123,1-11.

DOI: 10.1155/2016/8502123.

Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Mar Drugs. 2014;12(9):4984-5020.

DOI: 10.3390/md12094984.

Ahmadi A, Moghadamtousi SZ, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: a review. Biomed Res Int. 2015;2015:e825203,1-10.

DOI: 10.1155/2015/825203.

Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs. 2012;10(12):2795-2816.

DOI: 10.3390/md10122795.

Hao H, Fu M, Yan R, He B, Li M, Liu Q, et al. Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agr Immunol. 2019;30(1):937-954.

DOI: 10.1080/09540105.2019.1646216.

Hao H, Han Y, Yang L, Hu L, Duan X, Yang X, et al. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int J Biol Macromol. 2019;134:891-900.

DOI: 10.1016/j.ijbiomac.2019.05.084.

Carmelita A. Effect of ethanol extract of Dayak onion (Eleutherine palmifolia (L.) Merr.) on Balb/c mice against prevention of decreased germinal center diameter in lymph nodes and serum IgG levels. J Biosains Pascasarjana 2016;18(1):1-12.

Pratiwi D, Wahdaningsih S, Isnindar I. The test of antioxidant activity from bawang mekah leaves (Eleutherine americana Merr.) using DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Trad Med J. 2013;18(1):9-16.

DOI: 10.22146/tradmedj.7755.

Rodrigues J, Quinderé A, Queiroz IN, Coura C, Benevides N. Comparative study of sulfated polysaccharides from Caulerpa spp. (Chlorophyceae). Biotechnological tool for species identification? Acta Sci Biol Sci. 2012;34(4): 381-389.

DOI: 10.4025/actascibiolsci.v34i4.8976.

Bhadja P, Tan CY, Ouyang JM, Yu K. Repair effect of seaweed polysaccharides with different contents of sulfate group and molecular weights on damaged HK-2 cells. Polymers (Basel). 2016;8(5):e188,1-14.

DOI: 10.3390/polym8050188.

Mindaugas L, Zymonė K, Viškelis J, Klevinskas A, Janulis V. Determination of the phenolic composition and antioxidant activity of pear extracts. J Chem. 2017;2017:e7856521,1-9.

DOI: 10.1155/2017/7856521.

Hiransai P, Tangpong J, Kumbuar C, Hoonheang N, Rodpech O, Sangsuk P, et al. Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia. Asian Pac J Trop Biomed. 2016;6(11):950-956.

DOI: 10.1016/j.apjtb.2016.02.002.

Chabib L, Muhtadi W, Rizki M, Rahman R, Suhendri M, Hidayat A. Potential medicinal plants for improve the immune system from Borneo Island and the prospect to be developed as nanomedicine. MATEC Web of Conferences. 2018;154:e04006,1-6.

DOI: 10.1051/matecconf/201815404006.

Paramita S, Nuryanto M. Anti-inflammatory activity of bawang Dayak (Eleutherine bulbosa (Mill. Urb.)) ethanol bulb extracts. J Vocation Health Stud. 2018;2(2):51-55.

DOI: 10.20473/jvhs.V2.I2.2018.51-55.

Cutrim CS, Cortez MAS. A review on polyphenols: classification, beneficial effects and their application in dairy products. Int J Dairy Technol. 2018;71(3):564-578.

DOI: 10.1111/1471-0307.12515.

Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007;30(18):3268-3295.

DOI: 10.1002/jssc.200700261.

Agustin AR, Faika S, Ju YH. Influence of extracting solvents on its antioxidant properties of bawang Dayak (Eleutherine palmifolia L. Merr). Int J Chem Petrochem Tech. 2016;6(2):1-10.

Ramesh HPF, Tharanathan RN. Carbohydrates-the renewable raw materials of high biotechnological value. Crit Rev Biotechnol. 2003;23(2):149-173.

DOI: 10.1080/713609312.

Insanu M, Kusmardiyani S, Hartati R. Recent studies on phytochemicals and pharmacological effects of Eleutherine Americana Merr. Procedia Chem. 2014;13:221-228.

DOI: 10.1016/j.proche.2014.12.032.

Shen W, Wang H, Guo G, Tuo J. Immunomodulatory effects of Caulerpa racemosa var peltata polysaccharide and its selenizing product on T lymphocytes and NK cells in mice. Sci China C Life Sci. 2008;51(9):795-801.

DOI: 10.1007/s11427-008-0106-9.

Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation. Cell Mol Life Sci. 2018;75(12):2093-2109.

DOI: 10.1007/s00018-018-2784-1.

Zhao Y, Vanhoutte PM, Leung SWS. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129(2):83-94.

DOI: 10.1016/j.jphs.2015.09.002.

Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammo-pharmacology. 2007;15(6):252-259.

DOI: 10.1007/s10787-007-0013-x.

Ahmadinejad F, Geir Moller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants (Basel). 2017;6(3):e51,1-15.

DOI: 10.3390/antiox6030051.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.