The effect of pramlintide, an antidiabetic amylin analogue, on angiogenesis-related markers in vitro

Leila Safaeian , Golnaz Vaseghi, Mina Mirian, Mehdi Dehghani Firoozabad


Background and purpose: Irregularities of angiogenesis may participate in the pathogenesis of diabetes complications. Pramlintide is an amylin analogue administered for the treatment of type 1 and type 2 diabetes. The present investigation aimed at surveying the effect of pramlintide on angiogenesis-related markers in human umbilical vein endothelial cells (HUVECs).

Experimental approach: The proliferation of cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The effect of pramlintide on migration was estimated by Transwell® assay. in vitro evaluation of angiogenesis was performed by tube formation assay. The secretion of vascular endothelial growth factor (VEGF) to the supernatant of HUVECs was measured by an enzyme-linked immunosorbent assay (ELISA) kit. All experiments were performed in triplicate.

Findings / Results: Pramlintide exhibited no inhibitory effect on HUVECs proliferation. It significantly increased cell migration at the concentration of 1 µg/mL. Pramlintide (1 µg/mL) also enhanced average tubules length, size, and the mean number of junctions. However, there was not any significant change in VEGF release from HUVECs.

Conclusion and implications: Findings of this research revealed the effect of pramlintide on angiogenesis-related markers via enhancing migration and tubulogenesis in vitro, suggesting a worthwhile proposition for further clinical researches on improving vascular complications and healing of diabetic wounds.


Angiogenesis; Cell migration; Diabetes mellitus; HUVEC; Pramlintide; VEGF.

Full Text:



World health statistics, World Health Organization, Geneva: WHO Press; 2018. p. 7.

International Diabetes Federation IDF Atlas, 7th edition, Accessed 2019. Available from:

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546-551.

DOI: 10.4103/2230-8210.183480.

Cheng R, Ma JX. Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord. 2015;16(1):67-75.

DOI: 10.1007/s11154-015-9310-7.

Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74(2-3):172-183.

DOI: 10.1016/j.mvr.2007.05.006.

Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in cancer ecosystems. Front Oncol. 2018;8:248-260.

DOI: 10.3389/fonc.2018.00248.

Martin A, Komada MR, Sane DC. Abnormal angiogenesis in diabetes mellitus. Med Res Rev. 2003;23(2):117-145.

DOI: 10.1002/med.10024.

Edelman S, Maier H, Wilhelm K. Pramlintide in the treatment of diabetes mellitus. BioDrugs. 2008;22(6):375-386.

DOI: 10.2165/0063030-200822060-00004.

Hollander P, Maggs DG, Ruggles JA, Fineman M, Shen L, Kolterman OG, et al. Effect of pramlintide on weight in overweight and obese insulin‐treated type 2 diabetes patients. Obes Res. 2004;12(4): 661-668.

DOI: 10.1038/oby.2004.76.

Ratner RE, Dickey R, Fineman M, Maggs DG, Shen L, Strobel SA, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long‐term glycaemic and weight control in Type 1 diabetes mellitus: a 1‐year, randomized controlled trial. Diabet Med. 2004;21(11):1204-1212.

DOI: 10.1111/j.1464-5491.2004.01319.x.

Hasbak P, Opgaard OS, Eskesen K, Schifter S, Arendrup H, Longmore J, et al. Investigation of CGRP receptors and peptide pharmacology in human coronary arteries. Characterization with nonpeptide antagonist. J Pharmacol Exp Ther. 2003;304(1):326-333.

DOI: 10.1152/physrev.00037.2003.

Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG. The role of adrenomedullin in angiogenesis. Peptides. 2005;26(9):1670-1675.

DOI: 10.1016/j.peptides.2005.02.017.

Chigurupati S, Kulkarni T, Thomas S, Shah G. Calcitonin stimulates multiple stages of angiogenesis by directly acting on endothelial cells. Cancer Res. 2005;65(18):8519-8529.

DOI: 10.1158/0008-5472.CAN-05-0848.

Tuo Y, Guo X, Zhang X, Wang Z, Zhou J, Xia L, et al. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell. J Recept Signal Transduct Res. 2013;33(2):114-123.

DOI: 10.3109/10799893.2013.770528.

Akbari V, Sadeghi HM, Jafarian-Dehkordi A, Abedi D, Chou CP. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli. Protein Expr Purif. 2015;116:66-74.

DOI: 10.1016/j.pep.2015.07.005.

Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014;88:1-8.

DOI: 10.3791/51046.

Dana N, Haghjooy Javanmard Sh, Rafiee L. Antiangiogenic and antiproliferative effects of black pomegranate peel extract on melanoma cell line. Res Pharm Sci. 2015;10(2):117-124.

Liegl R, Koenig S, Siedlecki J, Haritoglou C, Kampik A, Kernt M. Temsirolimus inhibits proliferation and migration in retinal pigment epithelial and endothelial migration in retinal pigment epithelial and endothelial cells via mTOR inhibition and decreases VEGF and PDGF expression. PLoS One. 2014;9(2):e88203,1-10.

DOI: 10.1371/journal.pone.0088203.

Bai Y, Ma JX, Guo J, Wang J, Zhu M, Chen Y, et al. Müller cell‐derived VEGF is a significant contributor to retinal neovascularization. J Pathol. 2009;219(4):446-454.

DOI: 10.1002/path.2611.

Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004;84(3):903-934.

DOI: 10.1152/physrev.00037.2003

Kurashige C, Hosono K, Matsuda H, Tsujikawa K, Okamoto H, Majima M. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J. 2014;28(3):1237-1247.

DOI: 10.1096/fj.13-238998.

Wu X, Song Y, Li S, Liu X, Hua W, Wang K, et al. Pramlintide regulation of extracellular matrix (ECM) and apoptosis through mitochondrial-dependent pathways in human nucleus pulposus cells. Int J Immunopathol Pharmacol. 2017;31(1):1-14.

DOI: 10.1177/0394632017747500.

Caruso G, Fresta C, Lazzarino G, Distefano DA, Parlascino P, Lunte SM, et al. Sub-toxic human amylin fragment concentrations promote the survival and proliferation of SH-SY5Y cells via the release of VEGF and HSPB5 from endothelial RBE4 cells. Int J Mol Sci. 2018;19(11):E3659,1-18.

DOI: 10.3390/ijms19113659.

Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267-285.

DOI: 10.1111/j.1582-4934.2005.tb00355.x.

Ceriello A, Piconi L, Quagliaro L, Wang Y, Schnabel CA, Ruggles JA, et al. Effects of pramlintide on postprandial glucose excursions and measures of oxidative stress in patients with type 1 diabetes. Diabetes Care. 2005;28(3):632-637.

DOI: 10.2337/diacare.28.3.632.

Patrick S, Corrigan R, Grizzanti J, Mey M, Blair J, Pallas M, et al. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer's disease are associated with oxidative stress regulation mechanisms. J Alzheimers Dis. 2019;69(1):157-168.

DOI: 10.3233/JAD-180421.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.