Monastrol derivatives: in silico and in vitro cytotoxicity assessments

Zahra Bidram , Hajar Sirous, Ghadam Ali Khodarahmi, Farshid Hassanzadeh, Nasim Dana, Amir Ali Hariri, Mahboubeh Rostami


Background and purpose: Cancer is the leading cause of death in today's world, therefore the efforts to achieve anticancer drugs with higher potency and fewer side effects have always been conducted by researchers in the field of pharmaceutical chemistry.

Monastrol, a cytotoxic small molecule, from dihydropyrimidinone scaffold, is an inhibitor of the kinesin-5 protein. So, efforts to identify more derivatives of this molecule have been of interest.

Experimental approach: Some of monastrol's analogs as Eg5 inhibitors with different substitution patterns were analyzed, synthesized, and their cytotoxic effects were evaluated on MCF-7 and HeLa cancerous cells in vitro using the MTT assay. The structure-activity relationship (SAR) was studied in silico by molecular docking.

Findings / Results: Among all proposed structures, in ducking study, those with hydrophobic moieties on the C2-N3 region, those with a hydroxyl group on the phenyl on C4 position, and those with a carboxylic group on C5 were the best candidates. In vitro studies, on the other side, emphasized that monastrol still was the most potent derivative. Another finding was the more moderate activity of synthesized compounds on the HeLa cell compared to the MCF-7 cell line. During different challenges for substitution at 5-position, some earlier reports around the dihydropyrimidinone reactions were questioned. It seems that the change at the position 5 is not merely accessible, as earlier reports claimed. Also, we could not achieve any better cell cytotoxicity by the larger group in the thiourea region or position 5; nonetheless, it seems that the introduction of a methylene group at this position could be beneficial.

Conclusion and implications: The initial results of this study were valuable in terms of design and synthesis and will be useful for future investigations. 




Dihydropyrimidinones; Eg5 inhibitor; in vitro cytotoxicity; Molecular ducking; Monastrol.

Full Text:



Tayebee R, Amini MM, Ghadamgahi M, Armaghan M. H5PW10V2O40/Pip-SBA-15: a novel reusable organic-inorganic hybrid material as potent Lewis acid catalyst for one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. J Mol Catal A: Chem. 2013;366:266-274.

DOI: 10.1016/j.molcata.2012.10.004.

Razzaghi-Asl N, Kamrani-Moghadam M, Farhangi B, Vahabpour R, Zabihollahi R, Sepehri S. Design, synthesis and evaluation of cytotoxic, antimicrobial, and anti-HIV-1 activities of new 1,2,3,4-tetrahydropyrimidine derivatives. Res Pharm Sci. 2019;14(2):155-166.

DOI: 10.4103/1735-5362.253363.

Matos LHS, Masson FT, Simeoni LA, Homem-de-Mello M. Biological activity of dihydropyrimidinone (DHPM) derivatives: a systematic review. Eur J Med Chem. 2018;143:1779-1789.

DOI: 10.1016/j.ejmech.2017.10.073.

Jin T, Zhang S, Li T. p-Toluenesulfonic acid-catalyzed efficient synthesis of dihydropyrimidines: improved high yielding protocol for the Biginelli reaction. Synt Communs. 2002;32(12):1847-1851.

DOI: 10.1081/SCC-120004068.

Marques LA, Semprebon SC, Niwa AM, D’Epiro GFR, Sartori D, de Fátima Â, et al. Antiproliferative activity of monastrol in human adenocarcinoma (MCF-7) and non-tumor (HB4a) breast cells. Naunyn-Schmiedebergs Arch Pharmacol. 2016;389(12):1279-1288.

DOI: 10.1007/s00210-016-1292-9.

Tawfik HO, El-Moselhy TF, El-Din NS, El-Hamamsy MH. Design, synthesis, and bioactivity of dihydropyrimidine derivatives as kinesin spindle protein inhibitors. Bioorg Med Chem. 2019;27(23):115126.

DOI: 10.1016/j.bmc.2019.115126.

Russowsky D, Canto RFS, Sanches SAA, D’Oca MGM, de Fátima Â, Pilli RA, et al. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: monastrol, oxo-monastrol and oxygenated analogues. Bioorg Chem. 2006;34(4):173-182.

DOI: 10.1016/j.bioorg.2006.04.003.

Reddy S, Suryanarayana CV, Sharmila N, GV Ramana, Anuradha V, Hari Babu B. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity. Lett Drug Des Discov. 2013;10(8):699-705.

DOI: 10.2174/15701808113109990007.

Guido BC, Ramos LM, Nolasco DO, Nobrega CC, Andrade BY, Pic-Taylor A, et al. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer. 2015;15:283-297.

DOI: 10.1186/s12885-015-1274-1.

Abnous K, Barati B, Mehri S, Farimani MRM, Alibolandi M, Mohammadpour F, et al. Synthesis and molecular modeling of six novel monastrol analogues: evaluation of cytotoxicity and kinesin inhibitory activity against HeLa cell line. DARU. 2013;21(1):70-77.

DOI: 10.1186/2008-2231-21-70.

Guan B, Zhang C, Ning J. EDGA: a population evolution direction-guided genetic algorithm for protein-ligand docking. J Comput Biol. 2016;23(7):585-596.

DOI: 10.1089/cmb.2015.0190.

Studio D, Insight I. Accelrys Software Inc. San Diego, CA. 2009;92121. /products/collaborative-science/biovia-discovery-studio/visualization-download.php.

Morris GM, Huey R, Olson AJ. Using autodock for ligand‐receptor docking. Curr Protoc Bioinformatics. 2008;24(1):8-14.

DOI: 10.1002/0471250953.bi0814s24.

El-Emary T, Abdel-Mohsen SA. Synthesis and antimicrobial activity of some new 1,3-diphenyl-pyrazoles bearing pyrimidine, pyrimidinethione, thiazolopyrimidine, triazolopyrimidine, thio-and alkylthiotriazolop-yrimidinone moieties at the 4-position. Phosphorus Sulfur Silicon Relat Elem. 2006;181(11):2459-2474.

DOI: 10.1080/10426500600754695.

Awadallah FM, Piazza GA, Gary BD, Keeton AB, Canzoneri JC. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur J Med Chem. 2013;70:273-279.

DOI: 10.1016/j.ejmech.2013.10.003.

Damgaard M, Al-Khawaja A, Nittegaard-Nielsen M, Petersen RF, Wellendorph P, Frølund B. Monastrol, a 3,4-dihydropyrimidin-2(1H)-thione, as structural scaffold for the development of modulators for GHB high-affinity binding sites and α1β2δ GABAA receptors. Eur J Med Chem. 2017;138:300-312.

DOI: 10.1016/j.ejmech.2017.06.024.

Banoth S, Boda S, Perugu S, Balabadra S, Manga V. Design, synthesis, biological evaluation and in silico molecular docking studies of novel benzochromeno [2,3-d] thiazolopyrimidine derivatives. Res Chem Intermediat. 2018;44(3):1833-1846.

DOI: 10.1007/s11164-017-3201-3.

Zhang X, Breslav M, Grimm J, Guan K, Huang A, Liu F, et al. A new procedure for preparation of carboxylic acid hydrazides. J Org Chem. 2002;67(26):9471-9474.

DOI: 10.1021/jo026288n.

Shamim S, Khan KM, Salar U, Ali F, Lodhi MA, Taha M, et al. 5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones: as potent urease inhibitors; synthesis, in vitro screening, and molecular modeling study. Bioorg Chem. 2018;76:37-52.

DOI: 10.1016/j.bioorg.2017.10.021.

Hussein WM, Fatahala SS, Mohamed ZM, McGeary RP, Schenk G, Ollis DL, et al. Synthesis and kinetic testing of tetrahydropyrimidine‐2‐thione and pyrrole derivatives as inhibitors of the metallo‐β‐lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des. 2012;80(4):500-515.

DOI: 10.1111/j.1747-0285.2012.01440.x.

Mokale SN, Shinde SS, Elgire RD, Sangshetti JN, Shinde DB. Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg Med Chem Lett. 2010;20(15):4424-4426.

DOI: 10.1016/j.bmcl.2010.06.058.

Freshney RI. Culture of specific cell types: Wiley Online Library;2005.

DOI: 10.1002/0471747599.cac023.

Said MA, Eldehna WM, Ghabbour HA, Kabil MM, Al-shakliah NS, Abdel-Aziz HA. Solvent-free ring cleavage hydrazinolysis of certain Biginelli pyrimidines. J Chem. 2018;2018:6354742,1-6.

DOI: 10.1155/2018/6354742.

Al-Masoudi WA, Al-Masoudi NA, Weibert B, Winter R. Synthesis, X-ray structure, in vitro HIV and kinesin Eg5 inhibition activities of new arene ruthenium complexes of pyrimidine analogs. J Coord Chem. 2017;70(12):2061-2073.

DOI: 10.1080/00958972.2017.1334259.

Kolb S, Mondésert O, Goddard ML, Jullien D, Villoutreix BO, Ducommun B, et al. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. ChemMedChem: Chem Enabling Drug Discov. 2009;4(4):633-648.

DOI: 10.1002/cmdc.200800415.

Shastin AV, Korotchenko VN, Nenajdenko VG, Balenkova ES. A novel synthetic approach to dichlorostyrenes. Tetrahedron. 2000;56(35):6557-6563.

DOI: 10.1016/S0040-4020(00)00606.

Fu Rg, You Qd, Yang L, Wu Wt, Jiang C, Xu Xl. Design, synthesis and bioevaluation of dihydropyrazolo [3,4-b] pyridine and benzo [4,5] imidazo [1,2-a] pyrimidine compounds as dual KSP and Aurora-A kinase inhibitors for anti-cancer agents. Bioorg Med Chem. 2010;18(22):8035-8043.

DOI: 10.1016/j.bmc.2010.09.020.

Ragab FA, Abou-Seri SM, Abdel-Aziz SA, Alfayomy AM, Aboelmagd M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur J Med Chem. 2017;138:140-151.

DOI: 10.1016/j.ejmech.2017.06.026.

Samundeeswari S, Chougala B, Holiyachi M, Shastri L, Kulkarni M, Dodamani S, et al. Design and synthesis of novel phenyl-1,4-beta-carboline-hybrid molecules as potential anticancer agents. Eur J Med Chem. 2017;128:123-139.

DOI: 10.1016/j.ejmech.2017.01.014.

Tcherniuk S, van Lis R, Kozielski F, Skoufias DA. Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem Pharmacol. 2010;79(6):864-872.

DOI: 10.1016/j.bcp.2009.11.001.

Maliga Z, Mitchison TJ. Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chem Biol. 2006;6:2-10.

DOI: 10.1186/1472-6769-6-2.

Yan Y, Sardana V, Xu B, Homnick C, Halczenko W, Buser CA, et al. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol. 2004;335(2):547-554.

DOI: 10.1016/j.jmb.2003.10.074.

Akhaja TN, Raval JP. 1,3-Dihydro-2H-indol-2-ones derivatives: design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur J Med Chem. 2011;46(11):5573-5579.

DOI: 10.1016/j.ejmech.2011.09.023.

Kappe CO. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron. 1993;49(32):6937-6963.

DOI: 10.1016/S0040-4020(01)87971-0.

Pei YY, Li GC, Ran J, Wei FX. Kinesin family member 11 contributes to the progression and prognosis of human breast cancer. Oncol Lett. 2017;14(6):6618-6626.

DOI: 10.3892/ol.2017.7053.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.