Discovery of direct inhibitor of KRAS oncogenic protein by natural products: a combination of pharmacophore search, molecular docking, and molecular dynamic studies

Samaneh Hashemi , Amirhossein Sharifi, Sara Zareei, Ghazale Mohamedi, Mahmood Biglar, Massoud Amanlou

Abstract


Background and purpose: Aberrant signaling by oncogenic RAS proteins occurs in almost all human tumors. One of the promising strategies to overcome such cancers is the inhibition of KRAS protein, a subtype of RAS family involved in cell growth, differentiation, and apoptosis, through preventing its effector, SOS1, from being attached to the protein.

Experimntal approach: Herein, a virtual screening process was performed using pharmacophore search, molecular docking, and molecular dynamic simulations. A pharmacophore model was created to indicate essential features for a KRAS inhibitor and used for screening the National Cancer Institution (NCI) database to retrieve similar compounds to the pharmacophore model with more than 70% similarity. Chosen compounds were then docked into KRAS and four compounds were selected based on the highest binding scores. Next, a similarity search was done in the whole PubChem database to increase the number of potential inhibitors. The filtered compounds were docked again into KRAS and three of them were selected for molecular dynamic simulation. 

Findings / Results: Compounds 1a, 2d, and 3a can inhibit SOS-iKRASG12D interaction due to the higher number of interactions with the protein. Moreover, they achieved the equilibrium faster than the approved inhibitor.

Conclusion and implications: Auriculasin, a polyphenol flavonoid, can be considered as a potential inhibitor of SOS1-KRAS interaction. This compound seems to be a stronger anticancer than 9LI, a known inhibitor of KRAS, due to its better docking scores. Moreover, this compound can be an appropriate candidate to be formulated as an oral drug.

 

 


Keywords


Auriculasin; Docking studies; Flavonoid; KRAS; Molecular dynamic simulations; Virtual Screening.

Full Text:

PDF

References


Cox AD, Der CJ. Ras history: the saga continues. Small GTPases. 2010;1(1):2-27.

DOI: 10.4161/sgtp.1.1.12178.

Schubbert S, Shannon K, Bollag G. Hyperactive ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7(4):295-308.

DOI: 10.1038/nrc2109.

Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, et al. Targeted covalent inhibition of Grb2-Sos1 interaction through proximity-induced conjugation in breast cancer cells. Mol Pharm. 2017;14(5):1548-1557.

DOI: 10.1021/acs.molpharmaceut.6b00952.

Ahmadian MR, Zor T, Vogt D, Kabsch W, Selinger Z, Wittinghofer A, et al. Guanosine triphosphatase stimulation of oncogenic ras mutants. Proc Natl Acad Sci U S A. 1999;96(12):7065-7070.

DOI: 10.1073/pnas.96.12.7065.

Aoki K, Yoshida T, Sugimura T, Terada M. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res. 1995;55(17):3810-3816.

Kloog Y, Gana-Weisz M, Niv H, Elad G, Marciano D, Haklai R. Dislodgment and accelerated degradation of ras. Neurosci Lett. 1997;237:S28-S28.

DOI: 10.1016/S0304-3940(97)90115-4.

Marom M, Haklai R, Ben-Baruch G, Marciano D, Egozi Y, Kloog Y. Selective inhibition of ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem. 1995;270(38):22263-22270.

DOI: 10.1074/jbc.270.38.22263.

McCormick F. Ras GTPase activating protein: signal transmitter and signal terminator. Cell. 1989;56(1):5-8.

DOI: 10.1016/0092-8674(89)90976-8.

Cully M, Downward J. SnapShot: ras signaling. Cell. 2008;133(7):1292-1292.e1.

DOI: 10.1016/j.cell.2008.06.020.

Mariyama M, Kishi K, Nakamura K, Obata H, Nishimura S. Frequency and types of point mutation at the 12th codon of the c-Ki-ras gene found in pancreatic cancers from Japanese patients. Jpn J Cancer Res. 1989;80(7):622-626.

DOI: 10.1111/j.1349-7006.1989.tb01687.x.

Barbacid M. Ras genes. Annu Rev Biochem. 1987;56(1):779-827.

DOI: 10.1146/annurev.bi.56.070187.004023.

Ellis CA, Clark G. The importance of being K-ras. Cell Signal. 2000;12(7):425-434.

DOI: 10.1016/s0898-6568(00)00084-x.

Gysin S, Salt M, Young A, McCormick F. Therapeutic strategies for targeting ras proteins. Genes Cancer. 2011;2(3):359-372.

DOI: 10.1177/1947601911412376.

Zhan G, Pan L, Tu K, Jiao S. Antitumor, antioxidant, and nitrite scavenging effects of Chinese water chestnut (Eleocharis dulcis) peel flavonoids. J Food Sci. 2016;81(10):H2578-H2586.

DOI: 10.1111/1750-3841.13434.

Ranelletti FO, Maggiano N, Serra FG, Ricci R, Larocca LM, Lanza P, et al. Quercetin inhibits p21-ras expression in human colon cancer cell lines and in primary colorectal tumors. Int J Cancer. 2000;85(3):438-445.

DOI: 10.1002/(SICI)1097-0215(20000201)85:3<438:: AID-IJC22>3.0.CO;2-F

Kang HM, Kim JH, Lee MY, Son KH, Yang DC, Baek NI, et al. Relationship between flavonoid structure and inhibition of farnesyl protein transferase. Nat Prod Res. 2004;18(4):349-356.

DOI: 10.1080/14786410310001622022.

Sebastian RS, Goldman JD, Enns CW, Moshfegh AJ. Usual intakes of flavonoids: estimates from what we eat in America, NHANES 2007-2010. FASEB J. 2017;31(1 Supplement):647.3.

Azuine MA, Bhide SV. Adjuvant chemoprevention of experimental cancer: catechin and dietary turmeric in forestomach and oral cancer models. J Ethnopharmacol. 1994;44(3):211-217.

DOI: 10.1016/0378-8741(94)01188-5.

Kuzuhara T, Suganuma M, Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer lett. 2008;261(1):12-20.

DOI: 10.1016/j.canlet.2007.10.037.

Markt P, Schuster D, Langer T. Pharmacophore models for virtual screening. In: Sotriffer C, Mannhold R, Kubinyi H, Folkers G, editors. Virtual screening: principles, challenges, and practical guidelines: Wiley-VCH; 2011. pp. 115-152.

DOI: 10.1002/9783527633326.ch5

Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, et al. Small-molecule ligands bind to a distinct pocket in ras and inhibit Sos-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A. 2012;109(14):5299-5304.

DOI: 10.1073/pnas.1116510109.

Bagherzadeh K, Shirgahi Talari F, Sharifi A, Ganjali MR, Saboury AA, Amanlou M. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies. J Biomol Struct Dyn. 2015;33(3):487-501.

DOI: 10.1080/07391102.2014.893203.

Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. Ras oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-774.

DOI: 10.1038/nrc3106.

Kang NJ, Shin SH, Lee HJ, Lee KW. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther. 2011;130(3):310-324.

DOI: 10.1016/j.pharmthera.2011.02.004.

Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK, et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res. 2008;68(3):946-955.

DOI: 10.1158/0008-5472.CAN-07-3140.

Ito C, Itoigawa M, Tan HT, Tokuda H, Mou XY, Mukainaka T, et al. Anti-tumor-promoting effects of isoflavonoids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett. 2000;152(2):187-192.

DOI: 10.1016/s0304-3835(00)00331-1.

Ito C, Itoigawa M, Kojima N, Tokuda H, Hirata T, Nishino H, et al. Chemical constituents of Millettia taiwaniana: structure elucidation of five new isoflavonoids and their cancer chemopreventive activity 1. J Nat Prod. 2004;67(7):1125-1130.

DOI: 10.1021/np030554q.

Ribaudo G, Vendrame T, Bova S. Isoflavones from Maclura pomifera: structural elucidation and in silico evaluation of their interaction with PDE5. Nat Prod Res. 2017;31(17):1988-1994.

DOI: 10.1080/14786419.2016.1269101.

Cruz-Migoni A, Canning P, Quevedo CE, Bataille CJR, Bery N, Miller A, et al. Structure-based development of new ras-effector inhibitors from a combination of active and inactive ras-binding compounds. PNAS. 2019;116(7):2545-2550.

DOI: 10.1073/pnas.1811360116.

Hillig RC, Sautier B, Schroeder J, Moosmayer D, Hilpmann A, Stegmann CM, et al. Discovery of potent Sos1 inhibitors that block ras activation via disruption of the Ras-Sos1 interaction. PNAS. 2019;116(7):2551-2560.

DOI: 10.1073/pnas.1812963116.

Patgiri A, Yadav KK, Arora PS, Bar-Sagi D. An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol. 2011;7(9):585-587.

DOI: 10.1038/nchembio.612.

Burns MC, Howes JE, Sun Q, Little AJ, Camper DV, Abbott JR, et al. High-throughput screening identifies small molecules that bind to the Ras:Sos:Ras complex and perturb ras signaling. Anal Biochem. 2018;548:44-52.

DOI: 10.1016/j.ab.2018.01.025.

Fletcher S, Hamilton AD. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface. 2006;3(7):215-233.

DOI: 10.1098/rsif.2006.0115.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.