Targeting of cholera toxin A (ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes

Nafiseh Hosseini , Hossein Khanahmad, Bahram Nasr Esfahani, Mojgan Bandehpour, Laleh Shariati, Nushin Zahedi, Bahram Kazemi


Background and purpose: The study was launched to use zinc finger nuclease (ZFN) technology to disrupt the cholera toxin gene (ctxA) for inhibiting CT toxin production in Vibrio cholera (V. cholera).

Experimental approach: An engineered ZFN was designed to target the catalytic site of the ctxA gene. The coding sequence of ZFN was cloned to pKD46, pTZ57R T/A vector, and E2-crimson plasmid and transformed to Escherichia coli (E. coli) Top10 and V. cholera. The efficiency of ZFN was evaluated by colony counting.

Findings/Results: No expression was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in transformed E. coli. The ctxA gene sequencing did not show any mutation. Polymerase chain reaction on pKD46-ZFN plasmid had negative results. Transformation of E. coli Top10 with T/A vectors containing whole ZFN sequence led to 7 colonies all of which contained bacteria with self-ligated vector. Transformation with left array ZFN led to 24 colonies of which 6 contained bacteria with self-ligated vector and 18 of them contained bacteria with vector/left array. Transformation of V. cholera with E2-crimson vectors containing whole ZFN did not produce any colonies. Transformation with left array vectors led to 17 colonies containing bacteria with vector/left array. Left array protein band was captured using western blot assay.

Conclusions and implications: ZFN might have off target on bacterial genome causing lethal double-strand DNA break due to lack of non-homologous end joining (NHEJ) mechanism. It is recommended to develop ZFNs against bacterial genes, engineered packaging host with NHEJ repair system is essential.




ctxA Gene; Gene editing tools; Vibrio cholerae; Zinc finger nuclease.

Full Text:



Chowdhury FR, Nur Z, Hassan N, Von Seidlein L, Dunachie S. Pandemics, pathogenicity and changing molecular epidemiology of cholera in the era of global warming. Ann Clin Microbiol Antimicrob. 2017;16(10):1-6.

DOI: 10.1186/s12941-017-0185-1.

Adagbada AO, Adesida SA, Nwaokorie FO, Niemogha MT, Coker AO. Cholera epidemiology in Nigeria: an overview. Pan Afr Med J. 2012;12(59): 1-12.

DOI: 10.11604/pamj.02/07/2012.12.59.1627.

Faruque SM, Rahman MM, Hasan AM, Nair GB, Mekalanos JJ, Sack DA. Diminished diarrheal response to vibrio cholerae strains carrying the replicative form of the CTX(Phi) genome instead of CTX(Phi) lysogens in adult rabbits. Infect Immun. 2001;69(10):6084-6090.

DOI: 10.1128/IAI.69.10.6084-6090.2001.

Howard-Jones N. Robert Koch and the cholera vibrio: a centenary. Br Med J (Clin Res Ed). 1984;288(6414):379-381.

DOI: 10.1136/bmj.288.6414.379.

Zomer-van Ommen DD, Pukin AV, Fu O, Quarles Van Ufford LH, Janssens HM, Beekman JM, et al. Functional characterization of cholera toxin inhibitors using human intestinal organoids. J Med Chem. 2016;59(14):6968-6972.

DOI: 10.1021/acs.jmedchem.6b00770.

Coelho A, Andrade JR, Vicente AC, Dirita VJ. Cytotoxic cell vacuolating activity from Vibrio cholerae hemolysin. Infect Immun. 2000;68(3):1700-1705.

DOI: 10.1128/iai.68.3.1700-1705.2000.

Li J, Lim MS, Li S, Brock M, Pique ME, Woods VL Jr, et al. Vibrio cholerae toxin-coregulated pilus structure analyzed by hydrogen/deuterium exchange mass spectrometry. Structure. 2008;16(1):137-148. DOI: 10.1016/j.str.2007.10.027.

Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell. 2003;11(5):1139-1150.

DOI: 10.1016/s1097-2765(03)00170-9.

Yu HJ, Cha DSR, Shin DH, Nair GB, Kim EJ, Kim DW. Design and construction of Vibrio cholerae strains that harbor various CTX prophage arrays. Front Microbiol. 2018;9(339):1-8.

DOI: 10.3389/fmicb.2018.00339.

Dittmer JB, Withey JH. Identification and characterization of the functional toxboxes in the Vibrio cholerae cholera toxin promoter. J Bacteriol. 2012;194(19):5255-5263.

DOI: 10.1128/JB.00952-12.

Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. H-NS binding and repression of the ctx promoter in Vibrio cholerae. J Bacteriol. 2011;193(4):979-988.

DOI: 10.1128/JB.01343-09.

Trevisan M, Palu G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infec Ther. 2017;15(11):1001-1013.

DOI: 10.1080/14787210.2017.1400379.

Modares Sadeghi M, Shariati L, Hejazi Z, Shahbazi M, Tabatabaiefar MA, Khanahmad H. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: an approach towards gene therapy of beta thalassemia. J Cell Biochem. 2018;119(3):2512-2519.

DOI: 10.1002/jcb.26412.

Shariati L, Khanahmad H, Salehi M, Hejazi Z, Rahimmanesh I, Tabatabaiefar MA, et al. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system. J Gene Med. 2016;18(10):294-301.

DOI: 10.1002/jgm.2928.

Shariati L, Modarressi MH, Tabatabaiefar MA, Kouhpayeh S, Hejazi Z, Shahbazi M, et al. Engineered zinc-finger nuclease to generate site-directed modification in the KLF1 gene for fetal hemoglobin induction. J Cell Biochem. 2019;120:8438-8446.

DOI: 10.1002/jcb.28130.

Shariati L, Rohani F, Heidari Hafshejani N, Kouhpayeh S, Boshtam M, Mirian M, et al. Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: an approach towards gene therapy of β-thalassemia. J Cell Biochem. 2018;119(11):9357-9363.

DOI: 10.1002/jcb.27253.

Ma D, Liu F. Genome editing and its applications in model organisms. Genomics Proteomics Bioinformatics. 2015;13(6):336-344.

DOI: 10.1016/j.gpb.2015.12.001.

Chandrasegaran S, Carroll D. Origins of programmable nucleases for genome engineering. J Mol Biol. 2016;428(5):963-989.

DOI: 10.1016/j.jmb.2015.10.014.

Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169-1175.

Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct. 2000;29(1):183-212. DOI:10.1146/annurev.biophys.29.1.183.

Vanamee ÉS, Santagata S, Aggarwal AK. FokI requires two specific DNA sites for cleavage. J Mol Biol. 2001;309(1):69-78.

DOI: 10.1006/jmbi.2001.4635.

Mashimo T. Gene targeting technologies in rats: zinc finger nucleases, transcription activator‐like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev Growth Differ. 2014;56(1):46-52. DOI: 10.1111/dgd.12110.

Chang AY, Chau V, Vivian WY, Landas JA, Pang Y. Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods. 2017;1:22-25.

Boshtam M, Khanahmad Shahreza H, Feizollahzadeh S, Rahimmanesh I, Asgary S. Expression and purification of biologically active recombinant rabbit monocyte chemoattractant protein1 in Escherichia coli. FEMS Microbiol Lett. 2018;365(9):1-7.

DOI: 10.1093/femsle/fny070.

Shikanga OT, Mutonga D, Abade M, Amwayi S, Ope M, Limo H, et al. High mortality in a cholera outbreak in western Kenya after post-election violence in 2008. Am J Trop Med Hyg. 2009;81(6):1085-1890.

DOI: 10.4269/ajtmh.2009.09-0400.

Ali M, Lopez AL, You YA, Kim YE, Sah B, Maskery B, et al. The global burden of cholera. Bull World Health Organ. 2012;90:209-218.

DOI: 10.2471/BLT.11.093427.

Broeck DV, Horvath C, De Wolf MJ. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol. 2007;39(10):1771-1775.

DOI: 10.1016/j.biocel.2007.07.005.

Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015;81(7):2506-2514.

DOI: 10.1128/AEM.04023-14.

Pursey E, Sünderhauf D, Gaze WH, Westra ER, Van Houte S. CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathog. 2018;14(6): e1006990,1-8. DOI: 10.1371/journal.ppat.1006990.

Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR‐based tools in bacteria. Biotechnol Bioeng. 2016;113(5):930-943.

DOI: 10.1002/bit.25851.

Shahbazi Dastjerdeh M, Kouhpayeh S, Sabzehei F, Khanahmad H, Salehi M, Mohammadi Z, et al. Zinc finger nuclease: a new approach to overcome beta-lactam antibiotic resistance. Jundishapur J Microbiol. 2016;9(1):e29384,1-11.

DOI: 10.5812/jjm.29384.

Sabzehei F, Kouhpayeh S, Dastjerdeh MS, Khanahmad H, Salehi R, Naderi S, et al. A novel prokaryotic green fluorescent protein expression system for testing gene editing tools activity like zinc finger nuclease. Adv Biomed Res. 2017;6:155.

DOI: 10.4103/2277-9175.219420.

Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014;124(10):4154-4161.

DOI: 10.1172/JCI72992.

Rodríguez Rodríguez DR, Ramírez Solís R, Garza Elizondo MA, Garza Rodríguez ML, Barrera Saldaña HA. Genome editing: a perspective on the application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med. 2019;43(4):1559-1574.

DOI: 10.3892/ijmm.2019.4112.

Bowater R, Doherty AJ. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2006;2(2):e8,0093-0099. DOI:10.1371/journal.pgen.0020008.

Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18,1-15. DOI: 10.1128/AEM.01834-18.

Pitcher RS, Wilson TE, Doherty AJ. New insights into NHEJ repair processes in prokaryotes. Cell Cycle. 2005;4(5):675-680. DOI: 10.4161/cc.4.5.1676.

Malyarchuk S, Wright D, Castore R, Klepper E, Weiss B, Doherty AJ, et al. Expression of Mycobacterium tuberculosis Ku and Ligase D in Escherichia coli results in RecA and RecB-independent DNA end-joining at regions of microhomology. DNA Repair (Amst). 2007;6(10): 1413-1424. DOI: 10.1016/j.dnarep.2007.04.004.

Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80(3):523-543. DOI: 10.1128/MMBR. 00069-15.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.