Evaluation and comparison of the antidepressant-like activity of Artemisia dracunculus and Stachys lavandulifolia ethanolic extracts: an in vivo study

Reza Jahani , Dariush Khaledyan, Ali Jahani, Elham Jamshidi, Mohammad Kamalinejad, Mona Khoramjouy, Mehrdad Faizi


Several studies have supported the preventive and therapeutic values of ‎phenolic compounds including chlorogenic acid, syringic acid, vanillic acid, ferulic acid, caffeic acid, luteolin, rutin, catechin, kaempferol, and quercetin in mental disorders. Since these secondary metabolites are reported as the phenolic compounds of Artemisia dracunculus (A. dracunculus) and Stachys lavandulifolia (S. lavandulifolia), the main aim of this study was the evaluation and comparison of the phenolic contents, flavonoids, and antidepressant-like activity of Artemisia dracunculus with Stachys lavandulifolia. Antidepressant-like activity of the extracts was evaluated in the forced swimming test (FST) and the tail suspension test (TST). Moreover, the open field test was conducted to evaluate the general locomotor activity of mice following treatment with the extracts. Since phenolic compounds and flavonoids play main roles in pharmacological effects, the ‎phenolic and flavonoid contents of the extracts were measured. Though significant difference between the phenolic contents of the extracts was not observed, but S. lavandulifolia exhibited higher flavonoid contents.Animal treatment with extracts decreased the immobility times in both FST and TST compared to the vehicle group without any significant effect on the locomotor activity of animals. Also, S. lavandulifolia at 400 mg/kg showed higher potency in both tests compared to A. dracunculus. Our results provided promising evidence on the antidepressant-like activity of both extracts which could be related to flavonoids as the main components of the extracts, but more studies need to be conducted to specify the main compounds and the mechanisms involved in the observed effects.


Flavonoid; Forced swimming; Open field; Phenolic content; Tail suspension.

Full Text:



Bashir ZS, Anwar A. Postnatal Depression. Anadolu Psikiyatri Derg. 2016;17(6):515.

Demyttenaere K, Bruffaerts R, Posada-Villa J, Gasquet I, Kovess V, Lepine J, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA. 2004;291(21): 2581-2590.

Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160(8):1516-1518.

Oakes P, Loukas M, Oskouian RJ, Tubbs RS. The Neuroanatomy of depression: A review. Clin Anat. 2017;30(1):44-49.

Romay-Tallon R, Rivera-Baltanas T, Allen J, Olivares JM, Kalynchuk LE, Caruncho HJ. Comparative study of two protocols for quantitative image-analysis of serotonin transporter clustering in lymphocytes, a putative biomarker of therapeutic efficacy in major depression. Biomark Res. 2017;5(1):27-34.

Cusin C, Dougherty DD. Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biol Mood Anxiety Disord. 2012;2(1):14.-22

Nahas Z, Teneback C, Chae JH, Mu Q, Molnar C, Kozel FA, et al. Serial vagus nerve stimulation functional MRI in treatment-resistant depression. Neuropsychopharmacology. 2007;32(8):1649-1660.

Taylor S, Stein MB. The future of selective serotonin reuptake inhibitors (SSRIs) in psychiatric treatment. Med Hypotheses. 2006;66(1):14-21.

McGarry H, Pirotta M, Hegarty K, Gunn J. General practitioners and St. John's Wort: a question of regulation or knowledge? Complement Ther Med. 2007;15(2):142-148.

Sharifi-Rad M, Nazaruk J, Polito L, Morais-Braga MFB, Rocha JE, Coutinho HDM, et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol Res. 2018;215:76-88.

Mishra PM, Sharifi-Rad M, Shariati MA,Mabkhot YN, Al-Showiman SS, Rauf A, et al. Bioactive compounds and health benefits of edible Rumex species-A review. Cell Mol Biol (Noisy-le-grand). 2018;64(8):27-34.

Mishra AP, Saklani S, Salehi B, Parcha V,Sharifi-Rad M, Milella L, et al. Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: chemical profile and biological activities of tuber extracts. Cell Mol Biol (Noisy-le-grand). 2018;64(8):35-43.

Salehi B, Ezzat SM, Fokou PVT, Albayrak S, Vlaisavljevic S, Sharifi-Rad M, et al. Athyrium plants-review on phytopharmacy properties. J Tradit Complement Med. 2018;9(3):201-205.

Elkhayat ES, Alorainy MS, El-Ashmawy IM, Fat’hi S. Potential antidepressant constituents of Nigella sativa seeds. Pharmacogn Mag. 2016;12 (Suppl 1):S27-S31.

Machado DG, Bettio LE, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(4):642-650.

Nathan PJ. Hypericum perforatum (St John's Wort): a non-selective reuptake inhibitor? A review of the recent advances in its pharmacology. J Psychopharmacol. 2001;15(1):47-54.

Neamati A, Chaman F, Hosseini M, Boskabady MH. The effects of Valeriana officinalis L. hydro-alcoholic extract on depression like behavior in ovalbumin sensitized rats. J Pharm Bioall Sci. 2014;6(2):97-103.

Mumivand H, Babalar M, Tabrizi L, Craker LE, Shokrpour M, Hadian J. Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions. Hortic Environ Biote. 2017;58(4):414-422.

Karaboduk K, Karabacak O, Dogan SY, Karaboduk H, Gunduzer E, Tekinay T. Comparison of antimicrobial, antioxidant capacities and HPLC analysis of three Stachys species in Turkey.J Environ Prot Ecol. 2014;15(3A):1293-1302.

Pathak L, Agrawal Y, Dhir A. Natural polyphenols in the management of major depression. Expert Opin Investig Drugs. 2013;22(7):863-880.

Szwajgier D, Borowiec K, Pustelniak K.The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients. 2017;9(5). pii: E477.

Wang J, Fernández AE, Tiano S, Huang J, Floyd E, Poulev A, et al. An Extract of Artemisia dracunculus L. promotes psychological resilience in a mouse model of depression. Oxid Med Cell Longev. 2018;2018. Article ID 7418681, 9 pages.

Rabbani M, Sajjadi SE, Zarei HR. Anxiolytic effects of Stachys lavandulifolia Vahl on the elevated plus-maze model of anxiety in mice. J Ethnopharmacol. 2003;89(2-3):271-276.

Rabbani M, Sajjadi SE, Jalali A. Hydroalcohol extract and fractions of Stachys lavandulifolia Vahl: effects on spontaneous motor activity and elevated plus‐maze behaviour. Phytother Res. 2005;19(10):854-858.

Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22-34.

Maletic V, Robinson M, Oakes T, Iyengar S,Ball SG, Russell J. Neurobiology of depression:an integrated view of key findings. Int J Clin Pract. 2007;61(12):2030-2040.

Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.Nat Med. 2016;22(3):238-249.

Nickavar B, Esbati N. Evaluation of the antioxidant capacity and phenolic content of three Thymus species. J Acupunct Meridian Stud. 2012;5(3):119-125.

Jahani R, Mojab F, Mahboubi A, Nasiri A, Tahamtani A, Faizi M. An In-vivo study on anticonvulsant, anxiolytic, and sedative-hypnotic effects of the‎ polyphenol-rich Thymus kotschyanus extract; evidence for the involvement of GABA-A‎ Receptors. Iran J Pharm Res. 2019;18(3):1456-1465.

Haj-Mirzaian A, Kordjazy N, Haj-Mirzaian A, Ostadhadi S, Ghasemi M, Amiri S, et al. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests. Psychopharmacol (Berl). 2015;232(19):3551-3561.

Abdollahnejad F, Mosaddegh M, Kamalinejad M, Mirnajafi-Zadeh J, Najafi F, Faizi M. Investigation of sedative and hypnotic effects of Amygdalus communis L. extract: behavioral assessments and EEG studies on rat. J Nat Med. 2016;70(2):190-197.

Kessler RC, Sampson NA, Berglund P, Gruber MJ, Al-Hamzawi A, Andrade L, et al. Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol Psychiatr Sci. 2015;24(3):210-226.

Paez-Pereda M. New drug targets in the signaling pathways activated by antidepressants.Prog Neuropsychopharmacol Biol Psychiatry.. 2005;29(6):1010-1016.

Kukuia KK, Asiedu-Gyekye IJ, Woode E, Biney RP, Addae E. Phytotherapy of experimental depression: Kalanchoe integra Var. Crenata (Andr.) Cuf leaf extract. J Pharm Bioall Sci. 2015;7(1):26-31.

Cryan JF, Mombereau C, Vassout A.The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4-5):571-625.

Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull. 2010;26(4):327-337.

Khosravi H, Rahnema M, Asle RM. Anxiolytic and antidepressant effects of tarragon (Artemisia dracunculus L.) hydroalcoholic extract in male rats exposed to chronic restraint stress. Nova Biologica Reperta. 2017;4(1):1-8.

Lim DW, Han T, Jung J, Song Y, Um MY, Yoon M, et al. Chlorogenic Acid from Hawthorn berry (Crataegus pinnatifida fruit) prevents stress hormone‐induced depressive behavior, through monoamine oxidase b‐reactive oxygen species signaling in hippocampal astrocytes of mice. Mol Nutr Food Res. 2018:e1800029.

Wu J, Chen H, Li H, Tang Y, Yang L, Cao S, et al. Antidepressant potential of chlorogenic acid-enriched extract from Eucommia ulmoides oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules. 2016;21(3):260-276.

Dalmagro AP, Camargo A, Zeni ALB. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metab Brain Dis. 2017;32(6):1963-1973.

Zeni ALB, Camargo A, Dalmagro AP. Ferulic acid reverses depression-like behavior and oxidative stress induced by chronic corticosterone treatment in mice. Steroids. 2017;125:131-136.

Li G, Ruan L, Chen R, Wang R, Xie X, Zhang M, et al. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab Brain Dis. 2015;30(6):1505-1514.

Lee MS, Kim YH, Lee BR, Kwon SH, Moon WJ, Hong KS, et al. Novel antidepressant-like activity of caffeic acid phenethyl ester is mediated by enhanced glucocorticoid receptor function in the hippocampus. Evid Based Complementary Altern Med. 2014; 2014. Article ID 646039, 10 pages.

Theoharides TC, Conti P, Economu M.Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol. 2014;34(2):187-189.

Ishisaka M, Kakefuda K, Yamauchi M, Tsuruma K, Shimazawa M, Tsuruta A, et al. Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress. Biol Pharm Bull. 2011;34(9):1481-146.

Bhutada P, Mundhada Y, Bansod K, Ubgade A, Quazi M, Umathe S, et al. Reversal by quercetin of corticotrophin releasing factor induced anxiety-and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):955-960.

Machado DG, Bettio LE, Cunha MP, Santos AR, Pizzolatti MG, Brighente IM, et al. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems. Eur J Pharmacol. 2008;587(1-3):163-168.

Yan SX, Lang JL, Song YY, Wu YZ, Lv MH, Zhao X, et al. Studies on anti-depressant activity of four flavonoids isolated from Apocynum venetum Linn (Apocynaceae) leaf in mice. Trop J Pharm Res. 2015;14(12):2269-2277.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.