The regulatory effect of saffron stigma on the gene expression of the glucose metabolism key enzymes and stress proteins in streptozotocin-induced diabetic rats

Maryam Motamedrad , Alireza Shokouhifar, Mina Hemmati , Maryam Moossavi

Abstract


Oxidative stress plays a crucial role in the pathogenesis of hyperglycemia mediated complications.Since a great number of researches have reported antioxidant features of saffron, this study investigated  the antioxidant effect of saffron stigma extract (SSE) in streptozotocin-induced diabetic rats. Twenty eight diabetic male Wistar rats were divided in four groups containing: two diabetic groups receiving 25 and 100 mg/kg SSE respectively, one diabetic group receiving glibenclamide (0.6 mg/kg) and one diabetic control group receiving normal saline. Seven healthy adult male Wistar rats were also used as normal control group. After treatment (21 days), fasting blood glucose, insulin, oxidative stress markers,and pancreatic regeneration were assessed. The gene expression level of heat shock factor1, heat shock protein 27, and heat shock protein 70, also glucokinase (GK), and glucose 6-phosphatase (G6Pase) were determined using real-time polymerase chain reaction (RT-PCR). SSE in high dose (100 mg/kg) reduced fasting blood glucose (8.3 ± 0.4 mmol/L) compared with diabetic control (24.6 ± 1.2 mmol/L) (P < 0.05). Furthermore, SSE in high dose increased insulin level compared with diabetic control group (12.7 ± 0.6 vs 7.1 ± 0.3 µU/mL). RT-PCR analysis revealed decline in mRNA levels of stress proteins and G6Pase and increase in mRNA level of GK in treatment diabetic groups compared with diabetic control group.Data showed antioxidant and antidiabetic effects of SSE through altering insulin release and glucose metabolism pathways. Hypoglycemic potential of SSE may be due to change in GK and G6Pase enzymes expression. These findings provide a basis for the therapeutic potential of saffron in treatment of diabetes. 


Keywords


Antioxidant; Diabetes; Saffron; Stress protein.

Full Text:

PDF

References


Ogurtsova K, da Fernandes RJD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50.

Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24-38.

Pari L, Latha M. Antidiabetic effect of Scoparia dulcis: effect on lipid peroxidation in streptozotocin diabetes. Gen Physiol Biophys. 2005;24(1):13-26.

Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal. 2005;7(1-2):256-268.

Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol. 2005;4(1):5-15.

Fenercioglu AK, Saler T, Genc E, Sabuncu H, Altuntas Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in Type 2 diabetes mellitus without complications. J Endocrinol Invest. 2010;33(2): 118-124.

Gilbert MP, Pratley RE. Efficacy and safety of incretin-based therapies in patients with type 2 diabetes mellitus. Eur J Med. 2009; 122(6 Suppl):S309-S318.

Moshiri E, Basti AA, Noorbala AA, Jamshidi AH, Hesameddin Abbasi S, Akhondzadeh S. Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine. 2006;13(9-10):607-611.

Jafarova AF, Caballero-Ortega H, Riveron-Negrete L, Pereda-Miranda R, Rivera-Luna R, Hernandez MJ, et al. [In vitro evaluation of the chemopreventive potential of saffron]. Rev Invest Clin. 2002;54(5):430-436.

Oksala NKJ, Ekmekçi FG,Özsoy E, Kirankaya Ş, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014; 3:25-28.

Hemmati M, Serki E, Gholami M, Hoshyar R. Effects of an ethanolic extract of Berberis vulgaris fruits on hyperglycemia and related gene expression in streptozotocin-induced diabetic rats. Clinical Phytoscience. 2016;2:3-9.

Gholami M, Hemmati M, Taheri-Ghahfarokhi A, Hoshyar R, Moossavi M. Expression of glucokinase, glucose 6-phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey. Int J Diabetes Dev Ctries. 2016;36(1):125-131.

Hooper PL, Hooper PL. Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones. 2009;14(2):113-115.

Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, Doliba N, Han Y, et al. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes. 2006;55(1):1-12.

Haber BA, Chin S, Chuang E, Buikhuisen W, Naji A, Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes. J Clin Invest. 1995;95(2):832-841.

Hemmati M, Asghari S, Zohoori E. Effects of alcoholic and aqueous extract of barberry, jujube and saffron petals on serum level of adiponectin and lipid profile in diabetic rats. Iran J Endocrinol Metab. 2015;16(5):329-337.

Lal VK, Gupta PP, Awanish P. Hypoglycemic effect of Kyllinga triceps in STZ induced diabetic rats. J Diabetes Metab. 2012;3:6-8.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-419.

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-76.

Nili-Ahmadabadi A, Ali-Heidar F, Ranjbar A, Mousavi L, Ahmadimoghaddam D, Larki-Harchegani A, et al. Protective effect of amlodipine on diazinon-induced changes on oxidative/antioxidant balance in rat hippocampus. Res Pharm Sci. 2018;13(4):368-376.

Nili-Ahmadabadi A, Alibolandi P, Ranjbar A, Mousavi L, Nili-Ahmadabadi H, Larki-Harchegani A, et al. Thymoquinone attenuates hepatotoxicity and oxidative damage caused by diazinon: an in vivo study. Res Pharm Sci. 2018;13(6):500-508.

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during Diabetes mellitus. J Biomark. 2013;2013. Article ID: 378790.

Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003;135C(3):357-364.

Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009;583(4):759-766.

Kang C, Lee H, Jung ES, Seyedian R, Jo M, Kim J, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem. 2012;135(4):2350-2358.

Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212(2):167-178.

Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J. 2017;69(2):151-159.

Rezaee Khorasany A, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci. 2016;19(5):455-469.

Kanakis CD, Tarantilis PA, Tajmir-Riahi HA, Polissiou MG. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem. 2007;55(3):970-977.

Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, et al. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem. 2006;54(23):8762-8768.

Asdaq SM, Inamdar MN. Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol. 2010;162(2):358-372.

Wang S, Yang S, Vlantis AC, Liu SY, Ng EK, Chan AB, et al. Expression of antioxidant molecules and heat shock protein 27 in thyroid tumors. J Cell Biochem. 2016;117(11):2473-2481.

Altinoz E, Oner Z, Elbe H, Cigremis Y, Turkoz Y. Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats. Hum Exp Toxicol. 2015;34(2): 127-134.

Aggarwal A, Ashutosh, Chandra G, Singh AK. Heat shock protein 70, oxidative stress, and antioxidant status in periparturient crossbred cows supplemented with α-tocopherol acetate. Trop Anim Health Prod. 2013;45(1):239-245.

Pons H, Ferrebuz A, Quiroz Y, Romero-Vasquez F, Parra G, Johnson RJ, et al. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension. Am J Physiol Renal Physiol. 2013;304(3):289-299.

Reddy VS, Raghu G, Reddy SS, Pasupulati AK, Suryanarayana P, Reddy GB. Response of small heat shock proteins in diabetic rat retina. Invest Ophthalmol Vis Sci. 2013;54(12):7674-782.

Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones. 1996;1(2):97-98.

Kavanagh K, Zhang L, Wagner JD. Tissue-specific regulation and expression of heat shock proteins in type 2 diabetic monkeys. Cell Stress Chaperones. 2009;14(3):291-299.

Burkart V, Liu H, Bellmann K, Wissing D, Jaattela M, Cavallo MG, et al. Natural resistance of human beta cells toward nitric oxide is mediated by heat shock protein 70. J Biol Chem. 2000;275(26):19521-19528.


Refbacks

  • There are currently no refbacks.


Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.