A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca2+ entry

Mohammad Keyvanloo Shahrestanaki , Mahmoud Aghaei

Abstract


Diabetes incidence showed ascending trends in recent years indicating urgent need for new therapeutic agents. Extracellular adenosine signaling showed promising results. However, role of its A3 receptor in pancreatic β-cells proliferation and insulin secretion is not well established. Thus, we aimed to determine its main signaling mediators in MIN6 insulinoma cell line. A3 adenosine receptor (A3AR) expression was confirmed using RT-PCR. Receptor functionality was evaluated by measurements of cAMP, using ELISA kit, and intracellular Ca2+ levels, using Fura 2/AM probe in response to the specific A3AR agonist (Cl-IBMECA). Insulin ELISA kit was used to measure insulin release. Herein, we mentioned that MIN6 cells express active form of A3AR, which decreased cAMP levels with the half maximal effective concentration (EC50) value of 5.61. [Ca2+]i Levels transiently (approximately 120 sec) increased in response to the agonist. Cl-IBMECA increase insulin secretion at 0.01-1 µM, but showed an inhibitory effects at higher concentrations (1-10 µM). Altogether, we found that in MIN6 cells, A3AR, possibly through Ca2+ mediated signaling pathways, potentiated glucose-induced insulin secretion.


Keywords


Adenosine receptor; Cell viability; Diabetes, Insulin; MIN6 cells.

Full Text:

PDF

References


Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-281.

Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus-pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2015;11(4):228-241.

Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 2012;15(6):885-894.

Annes JP, Ryu JH, Lam K, Carolan PJ, Utz K, Hollister-Lock J, et al. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci U S A. 2012;109(10):3915-3920.

Navarro G, Abdolazami Y, Zhao Z, Xu H, Lee S, Armstrong NA, et al. Genetic disruption of adenosine kinase in mouse pancreatic β-cells protects against high fat diet-induced glucose intolerance. Diabetes. 2017;66(7):1928-1938.

Ohtani M, Oka T, Ohura K. Possible involvement of A2A and A3 receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol. 2013;187:86-94.

Szkudelski T, Szkudelska K. Regulatory role of adenosine in insulin secretion from pancreatic β-cells-action via adenosine A 1 receptor and beyond. J Physiol Biochem. 2015;71(1):133-140.

Chia JS, McRae JL, Thomas HE, Fynch S, Elkerbout L, Hill P, et al. The protective effects of CD39 over-expression in multiple low dose streptozotocin-induced diabetes in mice. Diabetes. 2013;62(6):2026-2035.

Schulz N, Liu KC, Charbord J, Mattsson CL, Tao L, Tworus D, et al. Critical role for adenosine receptor A2a in β-cell proliferation. Mol Metab. 2016;5(11):1138-1146.

Csóka B, Törő G, Vindeirinho J, Varga ZV, Koscsó B, Németh ZH, et al. A2A adenosine receptors control pancreatic dysfunction in high-fat-diet-induced obesity. FASEB J. 2017;31(11):4985-4997.

Singh A, Gibert Y, Dwyer KM. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology. 2018;18(6):615-623.

Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol. 2013;228(8): 1703-1712.

Merighi S, Borea PA, Gessi S. Adenosine receptors and diabetes: focus on the A2B adenosine receptor subtype. Pharmacol Res. 2015;99:229-236.

Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, et al. Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res. 2014;12(1):194-208.

Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther. 2008;117(1):123-140.

Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 2004;18(2):406-408.

Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today. 2012;17(7-8):359-366.

Panahi Arasi F, Keyvanloo Shahrestanaki M, Aghaei M. A2a adenosine receptor agonist improves endoplasmic reticulum stress in MIN6 cell line through protein kinase A/protein kinase B/Cyclic adenosine monophosphate response element‐binding protein/and growth arrest and DNA‐damage‐inducible 34/eukaryotic initiation factor 2α pathways. Journal of cellular physiology. 2018. DOI: 10.1002/jcp.27719.

Keyvanloo Shahrestanaki M, Panahi Arasi F, Aghaei M. Adenosine protects pancreatic beta cells against apoptosis induced by endoplasmic reticulum stress. J Cell Biochem. 2018;119(10):7887-7897.

Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev. 2015;67(1):74-102.

Reshkin SJ, Guerra L, Bagorda A, Debellis L, Cardone R, Li AH, et al. Activation of A 3 adenosine receptor induces calcium entry and chloride secretion in A 6 cells. J Membr Biol. 2000;178(2):103-113.

Furman B, Ong WK, Pyne NJ. Cyclic AMP signaling in pancreatic islets. Adv Exp Med Biol. 2010;654:281-304.

Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, et al. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003;17(13): 1575-1580.

Dyachok O, Idevall-Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, et al. Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab. 2008;8(1):26-37.

Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP,.Rutter GA Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem J. 2003;369(Pt 2):287-299.

Rüsing D, Müller CE, Verspohl EJ. The impact of adenosine and A2B receptors on glucose homoeostasis. J Pharm Pharmacol. 2006;58(12):1639-1645.

Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527-552.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.