Anti-melanogenesis and anti-tyrosinase properties of Pistacia atlantica subsp. mutica extracts on B16F10 murine melanoma cells

Samira Eghbali-Feriz , Akram Taleghani, Hadi Al-Najjar, Seyed Ahmad Emami, Homa Rahimi, Javad Asili, Samira Hasanzadeh, Zahra Tayarani-Najaran


Pistacia atlantica (P. atlantica) subsp. mutica has been used in traditional medicine and is famous for its medicinal properties. The aim of this study was to evaluate the effect of methanol (MeOH), n-hexane, dichloromethane (CH2Cl2), n-butanol (BuOH), ethyl acetate (EtOAc), water extracts and essential oil of                 P. atlantica subsp. mutica on melanin synthesis and oxidative stress in B16F10 melanoma cell line. The B16F10 cells viability after treatment with increasing concentrations of different extracts of the plant               (0.2-200 µg/mL) was measured using resazurin. Essential oil composition was identified by                               gas-chromatography-mass spectrometry (GC-MS) analysis and inhibitory effect on synthesis of melanin, mushroom tyrosinase activity, cellular tyrosinase, and oxidative stress were evaluated by the colorimetric and fluorometric methods. The data showed extracts at concentrations 0.2-200 µg/mL, did not show significant toxicity on melanoma cells but concentrations of 200 µg/mL of essential oil had cytotoxic effect. Pistacia atlantica subsp. mutica could inhibit the mushroom tyrosinase activity. Also the amount of melanin in B16F10 cells declined. In addition, the ability of P. atlantica subsp. mutica extracts in decreasing the amount of reactive oxygen species in melanoma cells revealed remarkable antioxidant activity. In addition, all concentrations of essential oil had no significant effect in this study. The melanogenesis inhibitory and antioxidant effects of P. atlantica subsp. mutica on B16F10 cells may suggest the potential whitening activity of the plant for using in dermatological skin care products and for prevention of skin aging in cosmetic industry.


Anti-tyrosinase; Melanogenesis; P. atlantica subsp. mutica.

Full Text:



Chung KW, Park YJ, Choi YJ, Park MH, Ha YM, Uehara Y, et al. Evaluation of in vitro and in vivo anti-melanogenic activity of a newly synthesized strong tyrosinase inhibitor (E)-3- (2,4 dihydroxybenzylidene)pyrrolidine-2,5-dione (3-DBP). Biochim Biophys Acta. 2012;1820(7): 962-969.

Riley PA. Melanogenesis and melanoma. Pigment Cell Res. 2003;16(5):548-552.

Abdel-Daim M, Funasaka Y, Komoto M, Nakagawa Y, Yanagita E, Nishigori C. Pharmacogenomics of metabotropic glutamate receptor subtype 1 and in vivo malignant melanoma formation. J Dermatol. 2010;37(7):635-646.

Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutat Res. 2005;571(1-2):121-132.

Hashemi-Shahri SH, Golshan A, Mohajeri SA, Baharara J, Amini E, Salek F, Sahebkar A, Tayarani-Najaran Z. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells. Anticancer Agents Med Chem. 2017. Epub ahead of print. DOI: 10.2174/1871520618666171213143455.

Ortonne JP, Bissett DL. Latest insights into skin hyperpigmentation. J Investig Dermatol Symp Proc. 2008;13(1):10-4.

Safaeian L, Sajjadi SE, Haghjooy Javanmard S, Montazeri H, Samani F. Protective effect of Melissa officinalis extract against H2O2-induced oxidative stress in human vascular endothelial cells. Res Pharm Sci. 2016; 11(5):383-389.

Mabberley DJ. The Plant-Book. 2rd ed. Cambridge: Cambridge University Press; 2008. pp. 42.

Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008;107(3):1120-1130.

Khatamsaz M. Anacardiaceae. In: Assadi M. Flora of Iran. Tehran: Research Institute of Forests and Rangelands; 1988. pp. 11.

Fathi Rezaei P, Fouladdel S, Ghaffari SM, Amin G, Azizi E. Induction of G1 cell cycle arrest and cyclin D1 down-regulation in response to pericarp extract of Baneh in human breast cancer T47D cells. Daru. 2012;20(1):101-105.

Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. Sci World J. 2013;2013. Article ID:219-815.

Tanideh N, Davarmanesh M, Andisheh-Tadbir A, Ranjbar Z, Mehriar P, Koohi-Hosseinabadi O. Healing acceleration of oral mucositis induced by 5-fluorouracil with Pistacia atlantica (bene) essential oil in hamsters. J Oral Pathol Med. 2016;46(9):725-730.

Tayarani-Najaran Z, Mousavi SH, Tajfard F, Asili J, Soltani S, Hatamipour M, et al. Cytotoxic and apoptogenic properties of three isolated diterpenoids from Salvia chorassanica through bioassay-guided fractionation. Food Chem Toxicol. 2013;57: 346-351.

Adams RP. Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectroscopy. 4th ed. Allured Publishing Corporation; 2007. pp. 104,125,146,150,423.

O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-5426.

Kim YM, Yun J, Lee CK, Lee H, Min KR, Kim Y. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J Biol Chem. 2002;277(18):16340-16344.

Qiao Z, Koizumi Y, Zhang M, Natsui M, Flores MJ, Gao L, et al. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem. 2012;76(10): 1877-1883.

Huang HC, Hsieh WY, Niu YL, Chang TM. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract. BMC Complement Altern Med. 2012;12: 72-80.

Tayarani-Najaran Z, Akaberi M, Vatani M, Emami SA. Evaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells. Iran J Basic Med Sci. 2016;19(6): 662-669.

Chen QX, Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem. 2002;50(14):4108-1412.

Boozari M, Mohammadi A, Asili J, Emami SA, Tayarani-Najaran Z. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines. Environ Toxicol Pharmacol. 2015;39(1):307-312.

Mälkiä A, Murtomäki L, Urtti A, Kontturi K. Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci. 2004;23(1):13-47.

Shan J, Fu J, Zhao Z, Kong X, Huang H, Luo L, et al. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. Int J Immunopharmacol. 2009;9(9):1042-1048.

Bouzaiene NN, Chaabane F, Sassi A, Chekir-Ghedira L, Ghedira K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016;144:80-85.

Ye Y, Chou GX, Wang H, Chu JH, Yu ZL. Flavonoids, apigenin and icariin exert potent melanogenic activities in murine B16 melanoma cells. Phytomedicine. 2010;18(1):32-35.

Choi MY, Song HS, Hur HS, Sim SS. Whitening activity of luteolin related to the inhibition of cAMP pathway in alpha-MSH-stimulated B16 melanoma cells. Arch Pharm Res. 2008;31(9):1166-1171.

Rezaie M, Farhoosh R, Pham N, Quinn RJ, Iranshahi M. Dereplication of antioxidant compounds in Bene (Pistacia atlantica subsp. mutica) hull using a multiplex approach of HPLC-DAD, LC-MS and (1)H NMR techniques. J Pharm Biomed Anal. 2016;117:352-362.

Si YX, Yin SJ, Oh S, Wang ZJ, Ye S, Yan L, et al. An integrated study of tyrosinase inhibition by rutin: progress using a computational simulation. J Biomol Struct Dyn. 2012;29(5):999-1012.

Liu-Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res. 2016;60(6):1264-1274.

Kwak JY, Seok JK, Suh HJ, Choi YH, Hong SS, Kim DS, et al. Antimelanogenic effects of luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino. Br J Dermatol. 2016;175(3):501-511.

Lee HS, Shin KH, Ryu GS, Chi GY, Cho IS, Kim HY. Synthesis of small moleculepeptide conjugates as potential whitening agents. Bull Korean Chem Soc. 2012;33(9):3004-3008.

Lee SY, Baek N, Nam TG. Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2015;31(1):1-13.

Ahmed ZB, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Mangelings D, et al. Antioxidant activities of Pistacia atlantica extracts modeled as a function of chromatographic fingerprints in order to identify antioxidant markers. Microchem J. 2016;128:208-217.

Sarkhail P, Salimi M, Sarkheil P, Mostafapour H. Anti-melanogenic activity and cytotoxicity of Pistacia vera hull on human melanoma SKMEL-3 cells. Acta Med Iran. 2017;55(7):422-428.

Gourine N, Yousfi M, Bombarda I, Nadjemi B, Stocker P, Gaydou E. Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind Crops Prod. 2010;31(2):203-208.

Emami SA, Yazdian-Robati R, Sadeghi M, Baharara J, Amini E, Salek F, et al. Inhibitory effects of different fractions of Nepeta satureioides on melanin synthesis through reducing oxidative stress. Res Pharm Sci. 2017;12(2):160-167.

Saghaie L , Pourfarzam M, Fassihi A, Sartippour B. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Res Pharm Sci. 2013;8(4):233-242.

Boghrati Z, Naseri M, Rezaie M, Pham N, Quinn RJ, Tayarani-Najaran Z, et al. Tyrosinase inhibitory properties of phenylpropanoid glycosides and flavonoids from Teucrium polium L. var. gnaphalodes. Iran J Basic Med Sci. 2016;19(8):804-811.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.