Synthesis and cytotoxic evaluation of novel quinazolinone derivatives as potential anticancer agents

Safoora Poorirani , Sedighe Sadeghian-Rizi, Ghadamali Khodarahmi, Marzieh Rahmani Khajouei, Farshid Hassanzadeh


Nitrogen-rich heterocyclic compounds represent a unique class of chemicals with especial properties and have been modified to design novel pharmaceutically active compounds. In this study, a series of novel quinazolinone derivatives with substituted quinoxalindione were synthesized in two parts. In the first part, 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione was prepared from para-amino -m-crozol in 5 steps. In the next part, 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives were obtained from antranilic acid. Then reaction of 6-(4-amino-3-methylphenoxy)quinoxaline-2,3(1H,4H)-dione with 2-alkyl-4H-benzo[d][1,3]oxazin-4-one derivatives resulted in the production of final componds. The structures of synthesized compounds were confirmed by IR and 1H-NMR. Cytotoxic activity of the compounds were evaluated at 0.1, 1, 10, 50 and 100 μM concentrations against MCF-7 and HeLa cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Almost all new compounds showed cytotoxic activity in both cell lines. Among tested compounds, 11g displayed the highest cytotoxic activity against both cell lines.


Cytotoxicity; Quinazolinone; Quinoxalindione.

Full Text:



Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.

Camarasa MJ. Heterocyclic Chemistry in Drug Discovery. Li JJ, editor. New jersey: Wiley and Sons, Hoboken; 2014: 8-16

Gomtsyan A. Heterocycles in drugs and drug discovery. Chem Heterocycl Compd (N Y). 2012;48(1):7-10.

Alaa A-M, Abou-Zeid LA, ElTahir KEH, Mohamed MA, El-Enin MAA, El-Azab AS. Design, synthesis of 2, 3-disubstitued 4 (3H)-quinazolinone derivatives as anti-inflammatory and analgesic agents: COX-1/2 inhibitory activities and molecular docking studies. Bioorg Med Chem. 2016;24(16):3818-3828.

Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl) quinazolin-4 (3 H)-one. J Am Chem Soc. 2015;137(5):1738-1741.

Ryu CK, Kim YH, Im HA, Kim JY, Yoon JH, Kim A. Synthesis and antifungal activity of 6,7-bis(arylthio)-quinazoline-5,8-diones and furo[2, 3-f]quinazolin-5-ols. Bioorg Med Chem Lett. 2012;22(1):500-503.

Wang Z, Wang M, Yao X, Li Y, Tan J, Wang L, et al. Design, synthesis and antiviral activity of novel quinazolinones. Eur J Med Chem. 2012;53:275-282.

Kamal A, Reddy BS, Sridevi B, Ravikumar A, Venkateswarlu A, Sravanthi G, et al. Synthesis and biological evaluation of phaitanthrin congeners as anti-mycobacterial agents. Bioorg Med Chem Lett. 2015;25(18):3867-3872.

Bhattacharjee AK, Hartell MG, Nichols DA, Hicks RP, Stanton B, Van Hamont JE, et al. Structure-activity relationship study of antimalarial indolo [2, 1-b] quinazoline-6, 12-diones (tryptanthrins). Three dimensional pharmacophore modeling and identification of new antimalarial candidates. Eur J Med Chem. 2004;39(1):59-67.

Marzaro G, Guiotto A, Chilin A. Quinazoline derivatives as potential anticancer agents: a patent review (2007–2010). Expert Opin Ther Pat. 2012;22(3):223-252.

Ahmad I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm. 2017;8(5):871-885.

Kamal A, Bharathi EV, Reddy JS, Ramaiah MJ, Dastagiri D, Reddy MK, et al. Synthesis and biological evaluation of 3,5-diaryl isoxazoline/isoxazole linked 2,3-dihydroquinazolinone hybrids as anticancer agents. Eur J Med Chem. 2011;46(2):691-703.

Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways. Sci Rep. 2015;5:11544.

Al-Rashood ST, Aboldahab IA, Nagi MN, Abouzeid LA, Abdel-Aziz AA, Abdel-hamide SG, et al. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg Med Chem. 2006;14(24):8608-8621.

Taliani S, Pugliesi I, Barresi E, Salerno S, Marchand C, Agama K, et al. Phenylpyrazolo[1,5-a]quinazolin-5(4H)-one: a suitable scaffold for the development of noncamptothecin topoisomerase I (Top1) inhibitors. J Med Chem. 2013;56(18): 7458-7462.

Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov. 2013;8(6):621-640.

Cruz-Lopez O, Conejo-García A, Nunez MC, Kimatrai M, Garcia-Rubino ME, Morales F, et al. Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors. Curr Med Chem. 2011;18(7):943-963.

Ruiz-Alcaraz AJ, Tristán-Manzano M, Guirado A, Gálvez J, Martínez-Esparza M, García-Peñarrubia P. Intracellular signaling modifications involved in the anti-inflammatory effect of 4-alkoxy-6, 9-dichloro [1, 2, 4] triazolo [4, 3-a] quinoxalines on macrophages. Eur J Pharm Sci. 2017;99:292-298.

Javidi J, Esmaeilpour M. Fe3O4@ SiO2–imid–PMAn magnetic porous nanosphere as recyclable catalyst for the green synthesis of quinoxaline derivatives at room temperature and study of their antifungal activities. Mater Res Bull. 2016;73:409-422.

Alavi S, Mosslemin MH, Mohebat R, Massah AR. Green synthesis of novel quinoxaline sulfonamides with antibacterial activity. Res Chem Intermed. 2017;43(8):4549-4559.

Barea C, Pabón A, Galiano S, Pérez-Silanes S, Gonzalez G, Deyssard C, et al. Antiplasmodial and leishmanicidal activities of 2-cyano-3-(4-phenylpiperazine-1-carboxamido) quinoxaline 1,4-dioxide derivatives. Molecules. 2012;17(8):9451-9461.

Harmenberg J, Wahren B, Bergman J, Akerfeldt S, Lundblad L. Antiherpesvirus activity and mechanism of action of indolo-(2,3-b)quinoxaline and analogs. Antimicrob Agents Chemother. 1988;32(11):1720-1724.

Ali IA, Al-Masoudi IA, Aziz NM, Al-Masoudi NA. New acyclic quinoxaline nucleosides. Synthesis and anti-hiv activity. Nucleosides Nucleotides Nucleic Acids. 2008;27(2):146-156.

Pinheiro AC, Mendonça Nogueira TC, de Souza MV. Quinoxaline nucleus: a promising scaffold in anti-cancer drug discovery. Anticancer Agents Med Chem. 2016;16(10):1339-52.

Balogh B, Carbone A, Spanò V, Montalbano A, Barraja P, Cascioferro S, et al. Investigation of isoindolo[2,1-a]quinoxaline-6-imines as topoisomerase I inhibitors with molecular modeling methods. Curr Comput Aided Drug Des. 2017;13(3):208-221.

Chowdhury N, Gangopadhyay M, Karthik S, Singh NP, Baidya M, Ghosh S. Synthesis, photochemistry, DNA cleavage/binding and cytotoxic properties of fluorescent quinoxaline and quinoline hydroperoxides. J Photochem Photobiol B. 2014;130:188-198.

González M, Cerecetto H. Quinoxaline derivatives: a patent review (2006--present). Expert Opin Ther Pat. 2012;22(11):1289-1302.

Gangjee A, Yang J, Ihnat MA, Kamat S. Antiangiogenic and antitumor agents. Design, synthesis, and evaluation of novel 2-amino-4-(3-bromoanilino)-6-benzylsubstituted pyrrolo[2, 3-d]pyrimidines as inhibitors of receptor tyrosine kinases. Bioorg Med Chem. 2003;11(23):5155-5170.

Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol. 2013;20(2):146-159.

Kerru N, Singh P, Koorbanally N, Raj R, Kumar V. Recent advances (2015-2016) in anticancer hybrids. Eur J Med Chem. 2017;142:179-212.

Noolvi MN, Patel HM, Bhardwaj V, Chauhan A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: search for anticancer agent. Eur J Med Chem. 2011;46(6):2327-2346.

Hosseinzadeh L, Aliabadi A, Rahnama M, Mir Mohammad Sadeghi H, Rahmani Khajouei M. Synthesis and cytotoxic evaluation of some new 3-(2-(2-phenylthiazol-4-yl) ethyl)-quinazolin-4(3H) one derivatives with potential anticancer effects. Res Pharm Sci. 2017;12(4):290-298.

Ahmed MF, Belal A. Design, synthesis, and molecular docking studies of 2‐(furan‐2‐yl)quinazolin‐4‐one derivatives as potential antiproliferative agents.

Arch Pharm (Weinheim). 2015;348(7):487-497.

Sadeghian-Rizi S, Khodarahmi G, Sakhteman A, Jahanian-Najafabadi A, Rostami M, Mirzaei M, et al. Synthesis and characterization of some novel diaryl urea derivatives bearing quinoxalindione moiety. Res. Pharm.Sci. 2018;13(1):82-92.

Gu W, Wang S, Jin X, Zhang Y, Hua D, Miao T, et al. Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents. Molecules. 2017;22(7):1154-1166.


  • There are currently no refbacks.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.