Synthesis, characterization, and stability study of desloratadine multicomponent crystal formation

Ahmad Ainurofiq, Rachmat Mauludin, Diky Mudhakir, Sundani Nurono Soewandhi


This study describes the formation of multicomponent crystal (MCC) of desloratadine (DES). The objective of this study was to discover the new pharmaceutical MCC of DES using several coformers. The MCC synthesis was performed between DES and 26 coformers using an equimolar ratio with a solvent evaporation technique. The selection of the appropriate solvent was carried out using 12 solvents. The preview of the MCC of DES was performed using polarized light microscopy (PLM).  The formation of MCC was confirmed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The accelerated stability of MCC at 40 °C and relative humidity of 75% was investigated using PXRD and FTIR. Depending on the prior evaluation, DES and benzoic acid (BA) formed the MCC. PLM and SEM results showed that crystal habit of combination between DES and BA differed from the constituent components. Moreover, the diffractogram pattern of DES-BA was distinct from the constituent components. The DSC thermogram showed a new peak which was distinct from both constituent components. The FTIR study proved a new spectrum. All characterizations indicated that a new solid crystal was formed, ensuring the MCC formation. In addition, DES-BA MCC had both chemical and physical stabilities for a period of 4 months.


Desloratadine; Multicomponent crystal; Characterization; Stability

Full Text:



Morissette SL, Almarsson Ö, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, cocrystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275-300.

Basavoju S, Boström D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530-541.

Singhal D, Curatolo W. Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev. 2004;56(3):335-347.

Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59(7):603-616.

Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun (Camb). 2015;52(4):640-655.

Pyo SH, Cho JS, Choi HJ, Han BH. Preparation and dissolution profiles of the amorphous, dihydrated crystalline, and anhydrous crystalline forms of paclitaxel. Drying Technol. 2007;25(10):1759-1767.

McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23(8):1888-1897.

Chadha R, Arora P, Saini A, Jain DS. Solvated crystalline forms of nevirapine: thermoanalytical and spectroscopic studies. AAPS PharmSciTech. 2010;11(3):1328-1339.

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281-1302.

Ainurofiq A, Choiri S. Development and optimization of a meloxicam/β-cyclodextrin complex for orally disintegrating tablet using statistical analysis. Pharm Dev Technol. 2016:1-12.Doi: 10.1080/10837450

Supuk E, Ghori MU, Asare-Addo K, Laity PR, Panchmatia PM, Conway BR. The influence of salt formation on electrostatic and compression properties of flurbiprofen salts. Int J Pharm. 2013;458(1):118-127.

Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical cocrystals. J Pharm Sci. 2006;95(3):499–516.

Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org Proc Res Dev. 2000;4(5):427-435.

Bhatt PM, Desiraju GR. Form I of desloratadine, a tricyclic antihistamine. Acta Crystallogr C. 2006;62(Pt 6):o362-363.

Geha RS, Meltzer EO. Desloratadine: A new, nonsedating, oral antihistamine. J Allergy Clin Immunol. 2001;107(4):751-762.

Agrawal DK. Pharmacology and clinical efficacy of desloratadine as an anti-allergic and anti-inflammatory drug. Expert Opin Investig Drugs. 2001;10(3):547-560.

Ahmed H, Shimpi MR, Velaga SP. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev Ind Pharm. 2017;43(1):89-97.

Ainurofiq A, Mauludin R, Mudhakir D, Umeda D, Soewandhi SN, Putra OD, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018;111:65-72.

Lou B, Perumalla SR, Sun CC. Significant expansion of the solid state landscape of salicylic acid based on charge-assisted hydrogen bonding interactions. Cryst Growth Des. 2015;15(1):24-28.

Samie A, Desiraju GR, Banik M. Salts and cocrystals of the antidiabetic drugs gliclazide, tolbutamide, and glipizide: solubility enhancements through drug–coformer interactions. Cryst Growth Des. 2017;17(5):2406-2417.

Brittain HG. Cocrystal systems of pharmaceutical interest: 2010. Cryst Growth Des. 2012;12(11):5823-5832.

Grothe E, Meekes H, Vlieg E, ter Horst JH, de Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth Des. 2016;16(6):3237-3243.

Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagán-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006;3(3):362-367.

Veronez IP, Daniel JSP, Garcia JS, Trevisan MG. Characterization and compatibility study of desloratadine. J Therm Anal Calorim. 2014;115(3):2407-2414.

Carlton RA, Polarized Light Microscopy. In: Pharmaceutical Microscopy. Springer, New York, NY; 2011. DOI 10.1007/978-1-4419-8831-7_2. pp. 7-64.

Jordan DD. Optical crystallographic characteristics of some USP drugs. J Pharm Sci. 1993;82(12):1269-1271.

Sanphui P, Mishra MK, Ramamurty U, Desiraju GR. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study. Mol Pharmaceutics. 2015;12(3):889-897.

Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10(6):665-668.

Suresh K, Minkov VS, Namila KK, Derevyannikova E, Losev E, Nangia A, et al. Novel synthons in sulfamethizole cocrystals: structure–property relations and solubility. Cryst Growth Des. 2015;15(7):3498-3510.

Shayanfar A, Ghavimi H, Hamishekar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Pharm Sci. 2013;16(4):577-587.

Wang J, Chang R, Zhao Y, Zhang J, Zhang T, Fu Q, et al. Coamorphous loratadine-citric acid system with enhanced physical stability and bioavailability. AAPS PharmSciTech. 2017;18(7):2541-2550

Aitipamula S, Wong ABH, Chow PS, Tan RBH. Pharmaceutical salts of haloperidol with some carboxylic acids and artificial sweeteners: hydrate formation, polymorphism, and physicochemical properties. Cryst Growth Des. 2014;14(5): 2542-2556.

David SE, Timmins P, Conway BR. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs. Drug Dev Ind Pharm. 2012;38(1):93-103.

Aakeröy CB, Fasulo M, Schultheiss N, Desper J, Moore C. Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc. 2007;129(45):13772-13773.

Cruz-Cabeza AJ. Acid–base crystalline complexes and the pKa rule. CrystEngComm. 2012;14: 6362-6365.

Heinz A, Strachan CJ, Gordon KC, Rades T. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol. 2009;61(8): 971-988.

Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide.AAPS PharmSciTech. 2011;12(2):693-704.

Zhang GC, Lin HL, Lin SY. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process. J Pharm Biomed Anal. 2012;66:162-169.


  • There are currently no refbacks.

Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.