High level expression of recombinant human growth hormone in Escherichia coli: crucial role of translation initiation region

Mahsa Ghavim, Khalil Abnous, Fatemeh Arasteh, Sahar Taghavi, Maryam Sadat Nabavinia, Mona Alibolandi, Mohammad Ramezani


For high-throughput production of recombinant protein in Escherichia coli (E. coli), besides important parameters such as efficient vector with strong promoter and compatible host, other important issues including codon usage, rare codons, and GC content specially at N-terminal region should be considered. In the current study, the effect of decreasing the percentage of GC nucleotides and optimizing codon usage at N-terminal region of human growth hormone (hGH) cDNA on the level of its expression in E. coli were investigated. Mutation in cDNA of hGH was performed through site-directed mutagenesis using PCR. Then, the mutant genes were amplified and cloned into the expression vector, pET-28a. The new constructs were transformed into the BL21(DE3) strain of E. coli and chemically induced for hGH expression. At the final stage, expressed proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), scanning gel densitometry, and western blot. SDS-PAGE scanning gel densitometry assay and western blot analysis revealed higher expression level of hGH by using the two new expressions constructs (mutant genes vectors with decreasing GC content and optimized-codon usage at N-terminal of cDNA) in comparison with wild gene expression vector. Obtained results demonstrated that decreasing the GC nucleotide content and optimization of codon usage at N-terminal of the hGH cDNA could significantly enhance the expression of the target protein in E. coli. Our results highlight the important role of both 5´ region of the heterologous genes in terms of codon usage and also GC content on non-host protein expression in E. coli.


GC content; Codon usage; Escherichia coli; Recombinant human growth hormone; pET-28a

Full Text:



Ghasemi F, Zomorodipour AR, Shojai SH, Ataei F, Khodabandeh M, Sanati MH. Using L-arabinose for production of human growth hormone in Escherichia coli, studying the processing of gIII: hGH precursor. Iran J Biotechnol. 2004;2(4):250-260.

Zhan X, Giorgianni F, Desiderio DM. Proteomics analysis of growth hormone isoforms in the human pituitary. Proteomics. 2005;(5)5:1228-1241.

Sommese L, Donnarumma G, Cipollaro de l'Ero G, Marcatili A, Vitiello M, Galdiero M. Growth hormone modulates IL-α and IFN-γ release by murine splenocytes activated by LPS or porins of Salmonella typhimurium. J Med Microb. 1996;45:40-47.

Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol. 2010;588(Pt 2):341-351.

Vance ML, Mauras N. Growth hormone therapy in adults and children. N Engl J Med. 1999;341(16):1206-1216.

Carrel AL, Myers SE, Whitman BY, Allen DB. Benefits of long-term GH therapy in Prader-Willi syndrome: a 4-year study. J Clin Endocrinol Metab. 2002;87(4):1581-1585.

Shin NK, Kim DY, Shin CS, Hong MS, Lee J, Shin HC. High-level production of human growth hormone in Escherichia coli by a simple recombinant process. J Biotechnol. 1998;62(2):143-151.

Tabandeh F, Shojaosadati SA, Zomorodipour A, Khodabandeh M, Sanati MH, Yakhchali B. Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli. Biotechnol Lett. 2004;26(3):245-250.

Cassidy SB, Driscoll DJ. Prader–Willi syndrome. Eur J Hum Genet. 2009;17:3-13.

Rezaei M, Zarkesh-Esfahani SH. Optimization of production of recombinant human growth hormone in Escherichia coli. J Res Med Sci. 2012;17(7).

Martial JA, Hallewell RA, Baxter JD, Goodman HM. Human growth hormone: complementary DNA cloning and expression in bacteria. Science. 1979;205(4406):602-607.

Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113-128.

Sezonov G, Joseleau-Petit D, D'Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol. 2007;189(23):8746-8749.

Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996;60(3):512-538.

Negahdari B, Shahosseini Z, Baniasadi V. Production of human epidermal growth factor using adenoviral based system. Res Pharm Sci. 2016;11(1):43-48.

Goeddel DV, Heyneker HL, Hozumi T, Arentzen R, Itakura K, Yansura DG, et al. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature. 1979;281:544-548.

Ikehara M, Ohtsuka E, Tokunaga T, Taniyama Y, Iwai S, Kitano K, et al. Synthesis of a gene for human growth hormone and its expression in Escherichia coli. Proc Natl Acad Sci U S A. 1984;81(19):5956-5960.

Mir Mohammad Sadeghi H, Rabbani M, Rismani E, Moazen F, Khodabakhsh F, et al. Optimization of the expression of reteplase in Escherichia coli. Res Pharm Sci. 2011;6(2):87-92.

Beheshti M, Abedi D, Mir Mohammad Sadeghi H,. Expression of genes encoding (3-hydroxyalkanoate) synthases from Pseudomonas aeroginusa PTCC1310 in Escherichia coli and optimization of condition for production of these enzymes. Res Pharm Sci. 2012;7(5):S445.

Gustafsson C, Minshull J, Govindarajan S, Ness J, Villalobos A, Welch M. Engineering genes for predictable protein expression. Protein Expr Purif. 2012;83(1):37-46.

Hale RS, Thompson G. Codon optimization of the gene encoding a domain from human type 1 neurofibromin protein results in a threefold improvement in expression level in Escherichia coli. Protein Expr Purif. 1998;12(2):185-188.

Hannig G, Makrides SC. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 1998;16(2):54-60.

Zhang MY, Schillberg S, Prins M, Fischer R. Optimizing expression of a rare codon-rich viral protein in Escherichia coli using the IMPACT system. Anal Biochem. 1999;271(2):202-204.

Brocca S, Schmidt‐Dannert C, Lotti M, Alberghina L, Schmid RD. Design, total synthesis, and functional overexpression of the Candida rugosa lipl gene coding for a major industrial lipase. Protein Sci. 1998;7(6):1415-1422.

Cormack BP, Bertram G, Egerton M, Gow NA, Falkow S, Brown AJ. Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology. 1997;143(Pt 2):303-311.

Kim CH, Oh Y, Lee TH. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene. 1997;199 (1-2):293-301.

Makoff AJ, Oxer MD, Romanos MA, Fairweather NF, Ballantine S. Expression of tetanus toxin fragment C in E. coli: high level expression by removing rare codons. Nucleic Acids Res. 1989;17(24):10191-10202.

Rangwala SH, Finn RF, Smith CE, Berberich SA, Salsgiver WJ, Stallings WC, et al. High-level production of active HIV-1 protease in Escherichia coli. Gene. 1992;122(2):263-269.

Zahn K. Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth. J Bacteriol. 1996;178(10):2926-2933.

Griswold KE, Mahmood NA, Iverson BL, Georgiou G. Effects of codon usage versus putative 5′-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expr Purif. 2003;27(1):134-142.

Jiang X, Li S, Zhou A, Li F, Xu X, Zhu D. Translation initiation region plays an important role in the expression of human thrombopoietin in Escherichia coli. Biochem Mol Biol Int. 1996;39(6):1109-1113.

Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene 1999;234(2):187-208.

Ishida M, Oshima T. Effective structure of a leader open reading frame for enhancing the expression of GC-rich genes. J Biochem. 2002;132(1):63-70.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254.

Mirzahoseini H, Mafakheri S, Soltan Mohammadi N, Enayati S, Mortazavidehkordi N. Heterologous proteins production in Escherichia coli: an investigation on the effect of codon usage and expression host optimization. Cell J(Yakhteh). 2011;12(4):453-458.

Kleber-Janke T, Becker WM. Use of modified BL21 (DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr Purif. 2000;19(3):419-424.

Li A, Kato Z, Ohnishi H, Hashimoto K, Matsukuma E, Omoya K, et al. Optimized gene synthesis and high expression of human interleukin-18. Protein Expr Purif. 2003;32(1):110-118.

Zomorrodipour A, Yakhchali B, Khodabandeh M, Deezagi A, Hosseini Mazinani SM, Valian Borujeni S, et al. The over-expression of biologically active human growth hormone in a T5-based system in Escherichia coli, studying temperature effect. J Sci I. R. Iran. 2004;15(1):27-32.

Levarski Z, Šoltýsová A, Krahulec J, Stuchlík S, Turňa J. High-level expression and purification of recombinant human growth hormone produced in soluble form in Escherichia coli. Protein Expr Purif. 2014;100:40-47.

Bulmer M. Codon usage and secondary structure of MS2 phage RNA. Nucleic Acids Res. 1989;17(5):1839-1843.

de Smit MH, van Duin J. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J Mol Biol. 1994;244(2):144-150.

Sprengart ML, Fatscher HP, Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res. 1990;18(7):1719-1723.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.