Biochemical and histopathological effects of green tea nanoparticles in ironized mouse model
Abstract
Keywords
Full Text:
PDFReferences
Srichairatanakool S, Kulprachakarn K, Pangjit K, Pattanapanyasat K, Fuchaeron S. Green tea extract and epigallocatechin 3-gallate reduced labile iron pool and protected oxidative stress in iron-loaded cultured hepatocytes. Adv Biosci Biotechnol. 2012;3(8):1140-1150.
Rujito L, Mulatsih S, M. Sofro AM. Status of superoxide dismutase in transfusion dependent thalassaemia. N Am J Med Sci. 2015;7(5):194-198.
Prabhu R, Prabhu V, Prabhu RS. Iron overload in beta thalassemia - a review. J Biosci Tech. 2009;1(1):20-31.
Badria FA, Ibrahim AS, Badria AF, Elmarakby AA. Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats. PLoS One. 2015;10(7):e0134156.
Sawada T, Konomi A, Yokoi K. Iron deficiency without anemia is associated with anger and fatigue in young Japanese women. Biol Trace Elem Res. 2014;159(1-3):22-31.
Crespy V, Williamson G. A review of the health effect of green tea catechins in in vivo animal models. J Nutr. 2004;134(12 suppl):3431S-3440S.
Albrecht MA, Evans W, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8(5):417-432.
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.
Namdeo M, Bajpai SK. Chitosan-coated magnetite (CCM) nanoparticles as novel iron-chelator for treatment of β-Thalassemia by tag and drag (TAD) approach. J Bionanosci. 2007;1(2):131-133.
Khan N, Bharali DJ, Adhami VM, Siddiqui IA, Cui H, Shabana SM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2014;35(2):415-423.
Ounjaijean S, Thephinlap C, Khansuwan U, Phisalapong C, Fucharoen S, Porter JB, et al. Effect of green tea on iron status and oxidative stress in iron-loaded rats. Med Chem. 2008;4(4):365-370.
Basu A, Betts NM, Mulugeta A, Tong C, Newman E, Lyons TJ. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr Res. 2013;33(3) :180–187.
Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009;1(9):1643-1670.
Saewong T, Ounjaijean S, Mundee Y, Pattanapanyasat K, Fucharoen S, Porter JB, et al. Effects of green tea on iron accumulation and oxidative stress in livers of iron-challenged thalassemic mice. Med Chem. 2010;6(2):57-64.
Yi S, Wang Y, Huang Y, Xia L, Sun L, Lenaghan SC, et al. Tea nanoparticles for immunostimulation and chemo-drug delivery in cancer treatment. J Biomed Nanotechnol. 2014;10(6):1016-1029.
Mounsey RB, Teismann P. Chelators in the treatment of iron accumulation in parkinson's disease. Int J Cell Biol. 2012(1);ID 983245.
Al-Tubaikh JA. Internal Medicine: An Illustrated radiological Guide. 1st ed. Berlin: Springer-Verlag New York, LLC. 2010.
Aigner E, Theurl I, Theurl M, Lederer D, Haufe H, Dietze O, et al. Pathways underlying iron accumulation in human nonalcoholic fatty liver disease. Am J Clin Nutr. 2008;87(5):1374-1383.
Walker JM. Thalassaemia major and the heart: a toxic cardiomyopathy tamed? Heart. 2013;99:827-834.
Aaseth J, Skaug MA, Cao Y, Andersen O. Chelation in metal intoxication--Principles and paradigms. J Trace Elem Med Biol. 2015;31:260-266.
Berdoukas V, Farmaki K, Carson S, Wood J, Coates T. Treating thalassemia major-related iron overload: the role of deferiprone. J Blood Med. 2012;3:119-129.
Srichairatanakool S, Ounjaijean S, Thephinlap C, Khansuwan U, Phisalpong C, Fucharoen S. Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload. Hemoglobin. 2006;30(2):311-327.
Samman S, Sandström B, Toft MB, Bukhave K, Jensen M, Sørensen SS, et al. Green tea or rosemary extract added to foods reduces nonheme-iron absorption. Am J Clin Nutr. 2001;73(3):607-612.
Mandel S, Weinreb O, Amit T, Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem. 2004;88(6):1555-1569.
Pinyou P, Kradtap Hartwell S, Jakmunee J, Lapanantnoppakhun S, Grudpan K. Flow injection determination of iron ions with green tea extracts as a natural chromogenic reagent. Anal Sci. 2010;26(5):619-623.
Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009;53(2):75-100.
Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci. 2006;78(18):2073-2080.
Liu G, Men P, Harris PL, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189-193.
Ahosseini M, Abbasian S, Moloudian H, Karimi F, Khoshayand M. Evaluation of antioxidant properties of Iran's native plants and investigation their synergistic effects with tea. Res Pharm Sci. 2012;7(5):S10.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.