Oligonucleotide aptamers: potential novel molecules against viral hepatitis

Mina Mirian, Hossein Khanahmad, Leila Darzi, Mansour Salehi, Hojjat Sadeghi-Aliabadi


Viral hepatitis, as an international public health concern, seriously affects communities and health system. In recent years, great strides have been taken for development of new potential tools against viral hepatitis. Among these efforts, a valuable strategy introduced new molecules called “aptamers”. Aptamers as potential alternatives for antibodies could be directed against any protein in infected cells and any components of viral particles. In this review, we will focus on recent advances in the diagnosis and treatment of viral hepatitis based on aptamer technology. In recent years, various types of aptamers including RNA and DNA were introduced against viral hepatitis. Some of these aptamers can be utilized for early and precise diagnosis of hepatitis infections and other group selected as therapeutic tools against viral targets. Designing diagnostic and therapeutic platforms based on aptamer technology is a promising approach in viral infections. The obtained aptamers in the recent years showed obvious potential for use as diagnostic and therapeutic tools against viral hepatitis. Although some modifications to increase the biostability and half-life of aptamers are underway, it seems these molecules will be a favorable substitute for monoclonal antibody in near future.


Dissolution rate; Nanocrystal; Nanoparticle; Nanosuspension; Nanosizing

Full Text:



Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol. 2014;28:753-770.

Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: New estimates of age‐specific antibody to HCV seroprevalence. Hepatology. 2013;57:1333-1342.

Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. The Lancet. 2015;386:1546-1555.

Zary N, MohammadReza Y, Majid Y, Parisa S, Mina M, Anahita B, et al. Prevalence and risk factors of HIV, syphilis, hepatitis B and C among female prisoners in Isfahan, Iran. Hepat Mon. 2012;2012:442-447.

Cooke G, Lemoine M, Thursz M, Gore C, Swan T, Kamarulzaman A, et al. Viral hepatitis and the Global Burden of Disease: a need to regroup. J Viral Hepat. 2013;20(9):600-601.

Hope V, Eramova I, Capurro D, Donoghoe M. Prevalence and estimation of hepatitis B and C infections in the WHO European Region: a review of data focusing on the countries outside the European Union and the European Free Trade Association. Epidemiol Infec. 2014;142(2):270-286.

Mirian M, Taghizadeh R, Khanahmad H, Salehi M, Jahanian-Najafabadi A, Sadeghi-Aliabadi H, Kouhpayeh Sh. Exposition of hepatitis B surface antigen (HBsAg) on the surface of HEK293T cell and evaluation of its expression. Res Pharm Sci. 2016;11:366-373.

Binning JM, Leung DW, Amarasinghe G. Aptamers in virology: recent advances and challenges. Front Microbiol. 2012;3:29.

Shum K-T, Zhou J, Rossi JJ. Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals. 2013;6:1507-1542.

Famulok M, Mayer Gn. Aptamer modules as sensors and detectors. Acc Chem Res. 2011;44:1349-1358.

Kadioglu O, Malczyk AH, Greten HJ, Efferth T. Aptamers as a novel tool for diagnostics and therapy. Invest New Drugs. 2015;33:513-520.

Vallian S, Khazaei M. Medical applications of aptamers. Res Pharm Sci. 2009;2:59-66.

Kouhpayeh S, Einizadeh A, Hejazi Z, Boshtam M, Shariati L, Mirian M, et al. Antiproliferative effect of a synthetic aptamer mimicking androgen response elements in the LNCaP cell line. Cancer Gene Ther. 2016. 23(8):254-257.

Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W. Development of DNA aptamers using Cell-SELEX. Nat Protoc. 2010;5:1169-1185.

Ohuchi S. Cell-SELEX technology. Biores Open Access.. 2012;1:265-272.

Ye M, Hu J, Peng M, Liu J, Liu J, Liu H, et al. Generating aptamers by cell-SELEX for applications in molecular medicine. Int J Mol Sci. 2012;13:3341-3353.

Song K-M, Lee S, Ban C. Aptamers and their biological applications. Sensors. 2012;12:612-631.

Mescalchin A, Restle T. Oligomeric nucleic acids as antivirals. Molecules. 2011;16:1271-1296.

Wandtke T, Woźniak J, Kopiński P. Aptamers in diagnostics and treatment of viral infections. Viruses. 2015;7:751-780.

Aspinall E, Hawkins G, Fraser A, Hutchinson S, Goldberg D. Hepatitis B prevention, diagnosis, treatment and care: a review. Occup Med.2011;61:531-540.

Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta‐analysis. Liver Int. 2016. 36(9):1239-1251

Papatheodoridis GV, Chan HL-Y, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J Hepatol. 2015;62:956-967.

Sinn DH, Lee J, Goo J, Kim K, Gwak GY, Paik YH, et al. Hepatocellular carcinoma risk in chronic hepatitis B virus–infected compensated cirrhosis patients with low viral load. Hepatology. 2015;62:694-701.

Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra B. Biosensors for pathogen detection: A smart approach towards clinical diagnosis. Sens Actuators B Chem. 2014;197:385-404.

Liu J, Yang Y, Hu B, Ma Z-y, Huang H-p, Yu Y, et al. Development of HBsAg-binding aptamers that bind HepG2. 2.15 cells via HBV surface antigen. Virologica Sinica. 2010;25:27-35.

Xi Z, Huang R, Li Z, He N, Wang T, Su E, et al. Selection of HBsAg-specific DNA aptamers based on carboxylated magnetic nanoparticles and their application in the rapid and simple detection of hepatitis B virus infection. ACS Appl Mater Interfaces. 2015;7:11215-11223.

Lee S, Kim YS, Jo M, Jin M, Lee D-k, Kim S. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem Biophys Res Commun. 2007;358:47-52.

Chen F, Hu Y, Li D, Chen H, Zhang X-L. CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLoS One. 2009;4:e8142.

Park JH, Jee MH, Kwon OS, Keum SJ, Jang SK. Infectivity of hepatitis C virus correlates with the amount of envelope protein E2: development of a new aptamer-based assay system suitable for measuring the infectious titer of HCV. Virology. 2013;439:13-22.

Lazarevic I. Clinical implications of hepatitis B virus mutations: recent advances. World J Gastroenterol. 2014;20:7653-7664.

Marascio N, Torti C, Liberto MC, Focà A. Update on different aspects of HCV variability: focus on NS5B polymerase.BMC Infect Dis. 2014;14(1):148.

Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell. 2006;124:767-782.

Kramvis A. Genotypes and genetic variability of hepatitis B virus. Intervirology. 2014;57:141-150.

Cuypers L, Li G, Libin P, Piampongsant S, Vandamme A-M, Theys K. Genetic diversity and selective pressure in hepatitis c virus genotypes 1–6: significance for direct-acting antiviral treatment and drug resistance. Viruses. 2015;7:5018-5039.

Soriano V, Labarga P, Barreiro P, Fernandez-Montero JV, de Mendoza C, Esposito I, et al. Drug interactions with new hepatitis C oral drugs. Expert Opin Drug Metab Toxicol. 2015;11:333-341.

Zornitzki T, Malnick S, Lysyy L, Knobler H. Interferon therapy in hepatitis C leading to chronic type 1 diabetes. World J Gastroenterol. 2015;21:233-239.

Munir S, Saleem S, Idrees M, Tariq A, Butt S, Rauff B, et al. Hepatitis C treatment: current and future perspectives. Virol J. 2010;7:296.

Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. The Lancet. 2001;358:958-965.

Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. The Lancet. 2013;380:2095-2128.

Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons.Curr Med Chem. 2011;18:4206-4214.

Bellecave P, Cazenave C, Rumi J, Staedel C, Cosnefroy O, Andreola M-L, et al. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother. 2008;52:2097-2110.

Yang D, Meng X, Yu Q, Xu L, Long Y, Liu B, et al. Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein. Antimicrob Agents Chemother.. 2013;57:4937-4944.

Hwang S-Y, Sun H-Y, Lee K-H, Oh B-H, Cha YJ, Kim BH, et al. 5′-Triphosphate-RNA-independent activation of RIG-I via RNA aptamer with enhanced antiviral activity. Nucleic Acids Res. 2012;40:2724-2733.

Romero-Lopez C, Berzal-Herranz B, Gómez J, Berzal-Herranz A. An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Res. 2012;94:131-138.

Zhu Q, Shibata T, Kabashima T, Kai M. Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur J Med Chem. 2012;56:396-399.

Caviglia G, Abate M, Pellicano R, Smedile A. Chronic hepatitis B therapy: available drugs and treatment guidelines. Minerva Gastroenterol Dietol. 2015;61:61-70.

Khungar V, Han S-H. A systematic review of side effects of nucleoside and nucleotide drugs used for treatment of chronic hepatitis B. Curr Hepat Rep. 2010;9:75-90.

Negro F. Adverse effects of drugs in the treatment of viral hepatitis. Best Pract Res Clin Gastroenterol. 2010;24:183-192.

Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012;61:6-17.

Feng H, Beck J, Nassal M, Hu K-h. A SELEX-screened aptamer of human hepatitis B virus RNA encapsidation signal suppresses viral replication. PLoS One. 2011;6:e27862.

Zhang Z, Zhang J, Pei X, Zhang Q, Lu B, Zhang X, et al. An aptamer targets HBV core protein and suppresses HBV replication in HepG2. 2.15 cells. Int J Mol Med. 2014;34:1423-1429.

Orabi A, Bieringer M, Geerlof A, Bruss V. An aptamer against the matrix binding domain on the hepatitis B virus capsid impairs virion formation. J Virol.2015;89:9281-9287.

Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 2011;19:95-103.

Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol. 2011;54:566-576.

Lohmann V. Hepatitis C virus RNA replication. Hepatitis C virus: from molecular virology to antiviral therapy: Springer; 2013;369:167-198.

Biroccio A, Hamm J, Incitti I, De Francesco R, Tomei L. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J Virol. 2002;76:3688-3696.

Kanai A, Tanabe K, Kohara M. Poly (U) binding activity of hepatitis C virus NS3 protein, a putative RNA helicase. FEBS letters. 1995;376:221-224.

Umehara T, Fukuda K, Nishikawa F, Sekiya S, Kohara M, Hasegawa T, et al., editors. Designing and analysis of a potent bi-functional aptamers that inhibit protease and helicase activities of HCV NS3. Nucleic acids symposium series. Oxford Univ Press. 2004;48:195-196.

Fukuda K, Umehara T, Sekiya S, Kunio K, Hasegawa T, Nishikawa S. An RNA ligand inhibits hepatitis C virus NS3 protease and helicase activities. Biochem Biophys Res Commun. 2004;325:670-675.

Yu X, Gao Y, Xue B, Wang X, Yang D, Qin Y, et al. Inhibition of hepatitis C virus infection by NS5A-specific aptamer. Antiviral Res. 2014;106:116-124.

Gao Y, Yu X, Xue B, Zhou F, Wang X, Yang D, et al. Inhibition of hepatitis C virus infection by DNA aptamer against NS2 protein. PLoS One. 2014;9:e90333.

Konno K, Fujita S, Iizuka M, Nishikawa S, Hasegawa T, Fukuda K, editors. Isolation and characterization of RNA aptamers specific for the HCV minus-IRES domain I. Nucleic acids symposium series. Oxford Univ Press. 2008;52:493-494.

Konno K, Iizuka M, Fujita S, Nishikawa S, Hasegawa T, Fukuda K. An RNA aptamer containing two binding sites against the HCV minus-IRES domain I. Nucleosides, Nucleotides and Nucleic Acids. 2011;30:185-202.

Kikuchi K, Umehara T, Fukuda K, Hwang J, Kuno A, Hasegawa T, et al. RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region. J Biochem. 2003;133:263-270.

Kikuchi K, Umehara T, Fukuda K, Kuno A, Hasegawa T, Nishikawa S. A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III–IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res. 2005;33:683-692.

Kikuchi K, Umehara T, Nishikawa F, Fukuda K, Hasegawa T, Nishikawa S. Increased inhibitory

ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun. 2009;386:118-123.

Sun H, Zu Y. A highlight of recent advances in aptamer technology and its application. Molecules. 2015;20:11959-11980.

Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9:537-550.

Bruno JG. Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules. 2015;20:6866-6887.

Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. Acta Naturae. 2013;5:34-43.

Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol adv. 2013;31:1260-1274.

Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48:259-271.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.