Effect of concomitant administration of three different antidepressants with vitamin B6 on depression and obsessive compulsive disorder in mice models

Azadeh Mesripour, Valiollah Hajhashemi, Athar Kuchak

Abstract


Vitamin B6 is a cofactor of various enzymes influencing numerous neurotransmitters in the brain such as norepinephrin, and serotonin. Since these neurotransmitters influence mood, the aim the present work to evaluate the effect of vitamin B6 on depression and obsessive compulsive behavior when coadministred with clomipramine, fluoxetine, or venlafaxine. Male mice weighing 25-30 g were used. The immobility time and latency to immobility was measured in the forced swimming test as a model of despair and the number of marbles buried (MB) in an open field was used as the model of obsessive compulsive  behavior in mice. Vitamin B6 (100 mg/kg, i.p.) was injected to animals for six days and on the last day antidepressants were also administered and the tests took place with 30 min intervals. Immobility was reduced in vitamin B6 + clomipramine (141 ± 15 s) or venlafaxine (116 ± 15 s) but it was not significant comparing with the drugs alone. No beneficial response was seen in co-administration of vitamin B6 with fluoxetine compared to fluoxetine alone. Fluoxetine also increased the latency to first immobility. Vitamin B6 + clomipramine or venlafaxine reduced the MB behaviour by 77 ± 12% and 83 ± 7% respectively, while using them alone was less effective. Fluoxetine was very effective in reducing MB behaviour (95 ± 3.4%) thus using vitamin B6 concomitantly was not useful. Therefore vitamin B6 as a harmless agent could be suggested in depression and particularly in obsessive compulsive disorder as an adjuvant for better drug response.

Keywords


Depression; Vitamin B6; Obsessive compulsive disorder; Anxiety

Full Text:

PDF

References


Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997;349:1498–1504.

Coppen A, Bailey J. Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. J Affect Disord. 2000;60(2):121-130.

Williamsa AL, Cotterb A, Sabinaa A, Girard C, Goodman J, Katza DL. The role for vitamin B-6 as treatment for depression: a systematic review. Family Practice 2005;22:532-537.

Bender DA. Non-nutritional uses of vitamin B-6. Br J Nutr.1999;81(1):7-20.

Garelis E, Young SN, Lal S, Sourkes TL. Monoamine metabolites in lumbar CSF: the question of their origin in relation to clinical studies. Brain Res. 1974;79:1-8.

Messripour M, Mesripour A. Effects of vitamin B6 on age associated changes of rat brain glutamate decarboxylase activity. Afr J Pharm Pharmacol. 2011;5(3):454-456.

Wyatt KM, Dimmock PW, Jones PW, Shaughn O’Brien PM. Efficacy of vitamin B­6 in the treatment of premenstrual syndrome: systematic review. Brit Med J. 1999;318(7195):1375-1381.

Skarupski KA, Tangney C, Li H, OuyangB,Evans DA, Morris MC. Longitudinal association of vitamin B-6, folate, and vitamin B-12 with depressive symptoms among older adults over time. Am J ClinNutr. 2010;92(2):330-335.

Roberts SH, Bedson E, Hughes D, Lloyd K, Menkes DB, Moat S, et al. Folate augmentation of treatment–evaluation for depression (FolATED): protocol of a randomized controlled trial. BMC Psychiatry. 2007;7:65.

Kulkarni SK, Dhir A. Effect of various classes of antidepressants inbehavioral paradigms of despair. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31;1248–1254.

Oshima A, Flachskamm C, Reul JM, Holsboer F, Linthorst AC. Altered serotonergic neurotransmission but normal hypothalamic–pituitary–adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775. Neuropsychopharmacology. 2003;28:2148-2159.

Bale TL, Vale WW. Increased depression-like behaviors in corticotropin-releasing factor receptor-2-deficient mice: sexually dichotomous responses. J Neurosci. 2003;23:5295-5301

Castagné V, Porsolt RD, Moser P. Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse. Eur J Pharmacol. 2009;616(1-3):128-133.

Njung'e K, Handley SL. Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav. 1991;38(1):63-67.

Njung’e K, Handley SL. Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice: a putative test for anxiolytic agents. Brit J Pharmacol. 1991;104:105–112.

Clayton PT. B6-responsive disorders: A model of vitamin dependency. J Inherit Metab Dis. 2006;29(2-3):317-326.

Gabbay V1, Mao X, Klein RG, Ely BA, Babb JS, Panzer AM, et al. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch Gen Psychiatry. 2012;69(2):139-149.

minobutyric acid in depressed adolescents: relationship to anhedonia. Arch Gen Psychiatry. 2012;69(2):139-149.

Serafini G, Pompili M, Innamorati M, Dwivedi Y, Brahmachari G, Girardi P. Pharmacological properties of glutamatergic drugs targeting NMDA receptors and their application in major depression. Current Pharmaceutical Design. 2013;19(10):1898-1922.

Borsini F, Podhorna J, Marazziti D. Do animal models of anxiety predict anxiolytic effects of antidepressants? Psychopharmacology. 2002;163(2):121-141.

Li X, Morrow D, Witkin JM. Decreases in nestlet shredding of mice by serotonin uptake inhibitors: Comparison with marble burying. Life Sci. 2006;78(17):1933-1939.

Deacon RMJ. Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols 2006;1(1):122-125.

Gyertyan I. Analysis of the marble burying response: marbles serve to measure digging rather than evoke burying. Behav Pharmacol. 1995;6(1):24-31.

Deacon RMJ, Rawlins JNP. Hippocampal lesions, species-typical behaviours and anxiety in mice. Behav Brain Res. 2005;156(1):241-249.

Gray JA, McNaughton N. The neuropsychology of anxiety (2nd ed.). Oxford Univ. Press 2000.pp:95-118.


Refbacks

  • There are currently no refbacks.


Creative Commons Attribution-NonCommercial 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.