Dramatic improvement in dissolution rate of albendazole by a simple, one-step, industrially scalable technique

Saeed Ghanbarzadeh, Aram Khalili, Abolghasem Jouyban, Shahram Emami, Yousef Javadzadeh, Mohammad Solhi, Hamed Hamishehkar Hamishehkar

Abstract


Low solubility and dissolution rate are the primary challenges in the drug development which substantially impact the oral absorption and bioavailability of drugs. Due to the poor water solubility, Albendazole (ABZ) is poorly absorbed from the gastrointestinal tract and shows low oral bioavailability (5%) which is a major disadvantage for the systemic use of ABZ. To improve the solubility and dissolution rate of ABZ, different classes of hydrophilic excipients such as sugars (lactose, sucrose, and glucose), polyols (mannitol and sorbitol), ionic surfactant (sodium lauryl sulfate) and non-ionic surfactant (Cremophor A25) were co-spray dried with ABZ. The crystallinity changes in the processed drug were characterized by differential scanning calorimetry and X-Ray diffraction methods were used to interpret the enhanced solubility and dissolution rate of the drug. Results showed that the solubility and dissolution rate of ABZ were increased 1.8-2.6 folds and 3-25 folds, respectively. Unexpectedly, SLS decreased the solubility index of drug powder even lower than the unprocessed drug which was attributed to drug-SLS ionic interaction as depicted from Fourier transform infrared spectroscopy. It was concluded that by applying the facile, one-step, industrially scalable technique and the use of small amounts of excipient (only 4% of the formulation), a great improvement (21 folds) in dissolution rate of ABZ was achieved. This finding may be used in the pharmaceutical industries for the formulation of therapeutically efficient dosage forms of class II and IV drugs classified in biopharmaceutical classification system.


Keywords


Albendazole; Spray drying; Dissolution rate; Solubility; Surfactants

Full Text:

PDF

References


Rasaie S, Ghanbarzadeh S, Mohammadi M, Hamishehkar H. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm Sci. 2014;20(3):96-101.

Abbaspour M, Jalayer N, Sharif Makhmalzadeh B. Development and evaluation of a solid self-nanoemulsifying drug delivery system for loratadin by extrusion-spheronization. Adv Pharm Bull. 2014;4(2):113-119.

Dizaj SM, Vazifehasl Zh, Salatin S, Adibkia Kh, Javadzadeh Y. Nanosizing of drugs: Effect on dissolution rate. Res Pharm Sci. 2015;10(2):95-108.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Res Pharm Sci. 2014;9(6):304-316.

Yehia SA, El-Ridi MS, Tadros MI, El-Sherif NG. Enhancement of the oral bioavailability of fexofenadine hydrochloride via Cremophor® El-Based liquisolid tablets. Adv Pharm Bull. 2015;5(4):569-581.

Garcı́a JJ, Bolás F, Torrado JJ. Bioavailability and efficacy characteristics of two different oral liquid formulations of albendazole. Int J Pharm. 2003;250(2):351-358.

García A, Barrera MG, Piccirilli G, Vasconi MD, Di Masso RJ, Leonardi D, et al. Novel albendazole formulations given during the intestinal phase of Trichinella spiralis infection reduce effectively parasitic muscle burden in mice. Parasitol Int. 2013;62(6):568-570.

Pensel PE, Castro S, Allemandi D, Bruni SS, Palma SD, Elissondo MC. Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis. Vet Parasitol. 2014;203(1-2):80-86.

Rahimpour Y, Hamishehkar H. Lactose engineering for better performance in dry powder inhalers. Adv Pharm Bull. 2012;2(2):183-187.

Dixit M, Kini AG, Kulkarni PK. Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods. Res Pharm Sci. 2010;5(2):89-97.

Hurtado y de la Peña M, Vargas Alvarado Y, Domínguez-Ramírez AM, Cortés Arroyo AR. Comparison of dissolution profiles for albendazole tablets using USP apparatus 2 and 4. Drug Dev Ind Pharm. 2003;29(7):777-784.

Safari S, Zarrintan MH, Soleimani M, Dorkoosh FA, Akbari H, Larijani B, et al. Evaluation and optimization of chitosan derivatives-based gene delivery system via kidney epithelial cells. Adv Pharm Bull. 2012;2(1):7-16.

Maghsoodi M, Hemati E, Qadermazi B, Yari Z. Hollow microspheres for gastroretentive floating-pulsatile drug delivery: preparation and in vitro evaluation. Adv Pharm Bull. 2011;1(2):55-61.

Wong SM, Kellaway IW, Murdan S. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles. Int J Pharm. 2006;317(1):61-68.

Nuzzo M, Millqvist-Fureby A, Sloth J, Bergenstahl B. Surface composition and morphology of particles dried individually and by spray drying. Drying Technol. 2015;33(6):757-767.

Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47-60.

El-Zhry El-Yafi AK, El-Zein H. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J Res Pharm Sci. 2015;10(4):283-291.

Zografi G, Newman A. Introduction to amorphous solid dispersions. Pharm Sci Encyclopedia. 2015.

Park JH, Choi HK. Enhancement of solubility and dissolution of cilostazol by solid dispersion technique. Arch Pharm Res. 2015;38(7):1336-1344.

Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403-416.

Patil P, Rao B S, Kulkarni SV, Basavaraj, Surpur C, Ammanage A. Formulation and in vitro evaluation of floating matrix tablets of ofloxacin. Asian J Res Pharm Sci. 2011;1(1):17-22.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons LicenseThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.