Silymarin and celecoxib attenuated the mycophenolate mofetil-induced myeloperoxidase activity and lipid peroxidation in the duodenum of rat

H. Malekinejad1,*, S. Sheikhzadeh1, H. Janbaz Aciabar1, R. Hobbenaghi2

1Department of Pharmacology & Toxicology, School of Veterinary Medicine, Urmia University, Urmia, Iran
2Department of Pathology, School of Veterinary Medicine, Urmia University, Urmia, Iran

Background and Aims: This study aimed to highlight the protective effect of Silymarin (SMN) and Celecoxib (CLX) on Mycophenolate Mofetil (MFF)-induced gastrointestinal (GI) disorders in rats.

Methods: Forty-two Wistar rats were assigned to 7 groups. The control animals received normal saline and the test animals treated with MFF (30 mg/kg, orally) and saline normal, MFF and SMN (25, 50 and 100 mg/kg, orally), MFF and Celecoxib (CLX, 50 mg/kg, orally), MFF and SMN plus CLX for 14 days. The Myeloperoxidase activity as a biomarker of neutrophil infiltration, nitric oxide content as an index of nitrosative stress and Malondialdehyde (MDA) production as an indicator of lipid peroxidation in the duodenal region of small intestine were determined. Histopathological examination also was conducted to show the impact of MFF administration and equally the protective effects of given compounds.

Results: The MFF-increased nitric oxide (NO) content, myeloperoxidase (MPA) activity, and malondialdehyde (MDA) level were reduced by SMN, CLX and SMN plus CLX administration, while the MFF-reduced level of total thiol molecules (TTM) increased significantly (P<0.05) by given compounds. Concurrent administration of SMN and CLX resulted in a synergistic effect on the reduction of MDA level and MPO activity. Histopathological examinations including the villus height to crypt’s depth ration, the MFF-induced villus atrophy and inflammatory cells infiltration were improved in SMN- and CLX-treated groups.

Conclusions: Our data suggested that the MFF-induced GI disorders may attribute to elevated NO, MDA levels and myeloperoxidase activity that result in pathological injuries. Moreover, the biochemical alterations and histopathologic injuries due to MFF administration were reduced by SMN alone or in combination with CLX indicating its protective effect.

Keywords: Gastrointestinal disorders; Mycophenolate mofetil; Protective effects; Silymarin; Synergistic effect