Recombinant SAG1 antigen - loaded PLGA microspheres as a novel vaccine delivery system against *Toxoplasma gondii*

M. Allahyari¹*, A. Vatanara², M. Golkar³, V. Ramazani², J. Babaie³, S. Amiri³

¹Parasitology Department, Pasteur institute of IRAN and Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
²Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
³Parasitology Department, Pasteur institute of IRAN

Background and Aims: The study was designed to assess PLGA microspheres capability as an antigen delivery system for recombinant SAG1 (surface antigen 1) of *Toxoplasma gondii*. Development of vaccines against *Toxoplasma gondii* in humans is of high priority, given the high burden of disease in some areas of the world and also the lack of effective drugs with few adverse effects.

Methods: Recombinant *Toxoplasma gondii* surface antigen (SAG1) which previously produced in E.coli as a purified and refolded protein was adsorbed on blank PLGA microspheres (Poly(D,L-lactic-co-glycolic acid, lactide:glycolide ratio 50:50), RG505) microspheres. PLGA microspheres were prepared by single emulsion oil in water solvent evaporation method (6% w/v polymer solution in Aceton, with 40 ml of 0.5 % w/v Poly vinyl alcohol). Recombinant SAG1 was adsorbed on PLGA microspheres at 1% w/w in PBS buffer, pH=7. Adsorption efficiency was assessed by protein quantification (BCA method). Protein integrity and antigenisity were evaluated by SDS PAGE, ELISA and Western blotting of released SAG1 during release profile.

Results: The mean size and PDI (Poly dispersity Index) of the resulting microspheres were 550 nm and 0.2, respectively. Adsorption efficiency of SAG1 on PLGA microspheres was 60%. The burst release was 30% of total adsorbed protein that occurred in 5 hours and followed by zero order release of 45% of total adsorbed protein in the subsequent 8 days. Integrity and antigenisity of SAG1 was confirmed during release profile.

Conclusions: Aforementioned findings confirm that PLGA microspheres were capable of the efficient and reproducible adsorption of recombinant SAG1 from *Toxoplasma gondii*. Also, PLGA microspheres which would preserve the adsorbed antigen integrity and antigenisity can be used as a potent delivery system. Ongoing in vivo studies are being done.

Keywords: PLGA; Recombinant SAG1; *Toxoplasma gondii*