Preparation and evaluation of superparamagnetic iron oxide nanoparticles coated with chitosan for targeting and controlled drug delivery of methotrexate

M. Salmanpour¹*, S. Mohammadi-samani², R. Miri³, N. Khalighian³

¹Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
²Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
³Medicinal & Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Background and Aims: Today, targeting and controlled drug delivery systems is the main goal of drug therapy. Magnetic targeting drug delivery is one of these systems. In our study, Fe₃O₄ superparamagnetic nanoparticles were synthesized and stabilized by chitosan. Then nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). Particle size distribution and zeta-potential of the particles were assessed using zeta sizer. The paramagnetic behavior of the uncoated and chitosan-coated nanoparticles were measured using vibrating sample magnetometry (VSM). Particles morphology and size range of uncoated iron oxide nanoparticles also evaluated by TEM showing uniform size with narrow size distribution about 10 nm. After coating nanoparticles with chitosan and loading of methotrexate (MTX), the change in size was assessed using zeta sizer. Considerable amount increase in size was observed after coating the particles with chitosan and loading with MTX, (the average size was 152 nm). Paramagnetic properties of the uncoated and chitosan-coated particles were assessed showing considerable amount decreasing in paramagnetic behavior after coating with chitosan, but it was considerable high to response the magnetic field. Finally loading efficiency and release rate of MTX from nanoparticles was assessed showing slow release behavior, suggesting this formulation as a good candidate for targeting and controlled delivery of MTX.

Keywords: Fe₃O₄; Nanoparticles; Chitosan; Methotrexate