Effects of the hypolipidemic drug WY-14643 on stearoyl-CoA and δ6-desaturase in HepG2 human hepatic cell line

M. Darabi1*, B. Yousefi2, S. Fayezi1, A. Mehdizadeh2, M. Khaniani3, B. Baradaran1, M. Shaaker2

1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Department of Biochemistry and Clinical Laboratories, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
3Department of Medical Genetics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

Background and Aims: Synthetic peroxisome proliferator-activated receptor alpha (PPARα) agonists are currently used in the clinic as lipid-lowering and anti-atherogenic drugs. The present study was designed to further explore the effect of PPARα agonist Wy-14643 on fatty acid metabolism of hepatocellular carcinoma cell line HepG2.

Methods: HepG2 cells cultured in RPMI-1640 were exposed to a range of concentrations [from 10-1.30 M (16 mg/L) up to 10-0.5 M (97 mg/L)] of the WY 14643, and investigated with respect to stearoyl-CoA (SCD1) and δ6-desaturase (δ6D) gene expression by RT-PCR and fatty acid composition by gas-liquid chromatography (GLC).

Results: WY 14643 induced both SCD1 and δ6D gene expression in vitro at a concentration as low as 10-1.30 M (16 mg/L; P=0.02). Exposure of cells to the PPARα agonist induced a time and dose-dependent increase in monounsaturated fatty acids (MUFA) and the δ6D index (20:4/18:2). Specifically, 10-0.5 M (97 mg/L) WY-14643 induced a significant increase of oleic acid (+26%; P=0.003) and 20:4/18:2 ratio (4-fold; P<0.001) in HepG2 cells.

Conclusions: The present study indicates that WY-14643 treatment of human hepatocytes induces SCD1 and δ6D mRNA, which is accompanied by modified cellular fatty acid composition. These data provide evidence for a lipogenic role of WY-14643 in hepatocytes. We hypothesize that therapeutic and pharmacological effects of PPARα agonists may involve actions on hepatic fatty acid metabolism.

Keywords: PPARα; WY-14643; SCD1; δ6-desaturase