Effect of rosiglitazone on coronary angiogenesis in diabetic and control rats

M. Khazaei, E. Salehi

Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran

Background and Aims: Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of nuclear receptor superfamily, consisting of three subtypes: PPARα, γ, β/δ. Clinical evidence suggests that PPARs may be involved in regulating angiogenesis. In this study, we examined the hypothesis that whether activation of PPARγ by Rosiglitazone, a PPARγ agonist, can alter coronary angiogenesis in diabetic and control rats.

Methods: Twenty four male rats were randomly divided into four groups as follows: group 1: control rats received vehicle; group 2: control rats received rosiglitazone (8mg/kg/day) by gavage every day; group 3: diabetic rats received vehicle; group 4: diabetic rats received rosiglitazone (8mg/kg/day) by gavage everyday. All rats were sacrificed after 21 days and their hearts muscles were harvested for immunohistochemistry.

Findings: The mean capillary density in control rats was higher than diabetic rats (p=0.08). Rosiglitazone treatment could not change capillary density of the heart in diabetic rats (121.71±13.32 versus 136.62±7.02/mm²) and nondiabetic rats (153.78±11.08 versus 135.96±4.3/mm²).

Conclusions: Our findings demonstrate that diabetes is associated with reduced capillary density in the heart and PPARγ activation by rosiglitazone could not alter angiogenesis in diabetic and non-diabetic rats.

Keywords: Angiogenesis; Diabetes; PPAR γ; Rosiglitazone