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Abstract 

 
Background and purpose: Gastric cancer (GC) is a major global health concern, ranking as the fifth most 
commonly diagnosed cancer. New treatment strategies like chemoprevention with oxaliplatin (OXA) are 
emerging, but safety data for GC patients are limited. This in silico study aimed to predict potential paradoxical 
effects of OXA treatment in GC patients using computational analysis. 
Experimental approach: RNA-sequencing data from GSE26942, GSE66229, and TCGA-STAD datasets 
were analyzed. Differential gene expression was identified using GEO2R and DESeq2. Pathway enrichment 
and protein-protein interaction networks were constructed to pinpoint genes crucial for GC progression. 
Finally, the R Survival package identified survival-related differentially expressed genes (DEGs). Interactions 
between OXA and GC-related genes were retrieved from the CTD database and compared with DEGs. 
Findings/Results: A total of 151 dysregulated genes were identified across the datasets, comprising 112 
downregulated and 39 upregulated genes. Thirteen genes emerged as potential prognostic biomarkers for 
overall survival. OXA interacted with 97 genes, of which 14 were linked to both OXA and differentially 
expressed genes in GC. OXA potentially reversed the expression of seven genes associated with GC 
progression (BIRC5, CAV1, CDH2, IL6, JUN, SERPINB2, TYMS), while promoting the expression of six 
others (BLVRB, CDKN2A, MAPK3, PLAU, PTGS2, SERPINE1). Notably, SERPINE1 showed a strong 
correlation with overall survival. 
Conclusion and implications: Our findings suggest that a patient's genetic profile, particularly SERPINE1 
expression levels, might be crucial for determining the safety and efficacy of OXA treatment for GC. 
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INTRODUCTION 
 

Gastric cancer (GC) is one of the most 
common malignancies worldwide. The global 
incidence rate of gastric cancer ranks fifth, with 
the mortality rate ranking third, thereby 
imposing a substantial burden on public health 
(1,2). Gastric cancer is a heterogeneous disease  
influenced by environment and genetics, 
including age, sex, race/ethnicity, family 
history, Helicobacter pylori infection, smoking, 
and diets high in nitrates and nitrites (2-5). Most 
GC patients are diagnosed at advanced stages. 
Conventional treatment options are not 

effective, leading to a poor prognosis with a 
median  overall survival of 10–12 months (6). 

The primary method for treating early 
gastric cancer is endoscopic resection. Surgery 
is the recommended approach for non-early 
operable GC, and it should include 
lymphadenectomy. Patients with stage 1B or 
higher cancers may experience improved 
survival with perioperative or adjuvant 
chemotherapy.  
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Advanced GC patients receive 
chemotherapy in successive stages, beginning 
with a platinum and fluoropyrimidine doublet 
in the first line, with a median survival of less 
than 1 year. Trastuzumab and ramucirumab, as 
well as nivolumab and pembrolizumab, are 
among the targeted therapies approved for the 
treatment of GC (7). 

Another proposed approach that could be 
used in GC patients is platinum-derived 
chemotherapeutics, which have been shown to 
significantly improve survival rates and 
effectively manage local recurrence (8). 
Furthermore, regimens containing oxaliplatin 

have demonstrated superiority over other 
platinum-based therapies (9).  

Oxaliplatin belongs to the third                   
generation of platinum compounds and is a 
cornerstone for the management of                   
advanced GC (10,11). It also primarily 
manifests its anticancer properties by binding to 
and impairing DNA, hence hindering                   
DNA replication. The nucleotide excision 
repair pathway is mostly responsible for                   
fixing DNA damage caused by oxaliplatin. 
When this pathway is activated, it usually                   
leads to the development of oxaliplatin 
resistance (12).

 
 

 
Fig. 1. Workflow of the current study.
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Despite the continuous improvements in 
chemotherapeutic regimens for GC, certain 
patients still experience adverse effects after 
chemotherapy. Moreover, most tumor cells 
develop resistance to chemotherapeutic drugs, 
resulting in treatment failure. Consequently, the 
five-year survival rate of patients with 
advanced GC has not significantly increased in 
recent years (13). Additionally, oxaliplatin 
elicits high levels of oxidative stress in cells, 
causing cell dysfunction and unpredictable 
effects on the cell. The approach to optimizing 
the drug's effectiveness while concurrently 
reducing its side effects is presently under 
investigation (13,14). 

Therefore, our understanding of the safety 
profile of this treatment in managing GC 
patients remains unexplored. Hence, the present 
study aimed to identify potential adverse 
outcomes triggered by oxaliplatin in GC 
patients using an in silico toxicogenomic 
approach. The workflow for the current study is 
shown in Fig. 1. 
 

MATERIAL AND METHODS 
 
Microarray data 

The keyword "gastric cancer" was utilized as 
the primary search term within the Gene 
Expression Omnibus (GEO) database 
(ncbi.nlm.nih.gov/geo/), with restrictions on 
Homo sapiens and Expression profiling by 
array study type. The results yielded a total of 
310 entries, with two gene expression datasets 
selected for further analysis. These specific 
gene expression profiles were derived from 
patients with GC tissues, allowing for 
comparison with other publicly available GC 
data. The chosen gene expression datasets were 
GSE26942 and GSE66229. GSE26942 was 
conducted on the Illumina HumanHT-12 V3.0 
expression beadchip platform GPL6947, 
whereas GSE66229 was based on the GPL570 
[HG-U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array. The samples 
collected were divided into two groups: primary 
GC tissues and normal gastric mucosae, which 
served as the control group. 

The dataset for stomach adenoma and 
adenocarcinoma [STAD] from The Cancer 
Genome Atlas (TCGA) was obtained via the 

Genomic Data Commons Data Portal (GDC). It 
consists of 343 tumors with clinical data, as 
well as 30 non-tumor samples. 
 
Identification of differentially expressed genes  

The analysis of differentially expressed genes 
(DEGs) between GC and normal tissues was 
performed utilizing the GEO2R online analysis 
tool (http://www.ncbi.nlm.nih.gov/geo/geo2r). 
The Benjamini-Hochberg adjusted P-value and 
fold change (FC) were calculated and 
subsequently employed for gene identification 
that met the cutoff criteria. Specifically, genes 
that exhibited an adjusted P-value of less than 0.05 
and |log2 FC| greater than 1 were considered 
DEGs. The tumor-normal DEGs were identified 
from TCGA data using the DESeq2 R package 
(15). A screening threshold was applied with an 
adjusted P-value less than 0.05 and |log2 FC 
greater than 1 as the cutoff condition. Using the 
Venn diagram drawing tool from FunRich 
software (http://funrich.org/), we screened for 
consistently DEGs among the three gene 
expression datasets (GEO and TCGA). 
Additionally, we used the ggVennDiagram 
package (16) in R (version 4.3.1) to visualize 
overlapping genes from downstream analyses. 
 
Network analysis  

The STRING database was employed to 
examine the interconnections between genes in 
a connected network at the protein level (17). 
The protein-protein interaction (PPI) network 
was subsequently constructed by removing 
disconnected nodes and ensuring that the 
combined scores were greater than 0.4. The PPI 
network was constructed using Cytoscape 
(version 3.10.1) (18). We retrieved the network 
of genes by consistently extracting DEGs from 
the analyzed expression profiles and uploading 
them to STRING. Furthermore, we utilized the 
Cytoscape plugin CytoHubba to rank hub nodes 
within these networks. Hub genes were 
identified as genes with the highest maximal 
clique centrality (MCC) score. 
 
Gene set enrichment analysis  

Pathway enrichment analysis was conducted 
using the ClueGo/CluePedia plugin of 
Cytoscape. Enrichment analysis of                   
gene-enriched pathway terms was                  
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conducted using Kyoto Encyclopedia of               
Genes and Genomes (KEGG), Reactome,                    
and WikiPathways. A P-value correction was 
performed using the Bonferroni step-down 
method. Using the ClueGo/CluePedia plugin 
from Cytoscape, we visualized the enriched 
pathways with a significance cutoff of less             
than 0.05. 
 
Oxaliplatin interacting genes 

For this investigation, we obtained 
oxaliplatin-interacting genes from the 
Comparative Toxicogenomics Database (CTD; 
http://CTD.mdibl.org), a publicly available 
resource that provides integrated data to 
enhance our understanding of the connections 
between chemicals, genes, and diseases (19). 
The analysis presented here was conducted 
using the data obtained in April 2024. 
Additionally, the CTD Chemical-Gene 
Interaction Query was instrumental in 
identifying binary interactions between 
oxaliplatin and key target genes. 
 
Survival analysis  

We utilized Kaplan-Meier survival curves to 
identify differentially expressed genes. 
Statistically significant thresholds were 
determined based on a log-rank P-value of less 
than 0.05 and a hazard ratio (HR) not equal to 
1. According to the cut-off point, the expression 
levels of the median DEGs in the TCGA 
samples were categorized as either high or low. 
We constructed Kaplan-Meier survival curves 
using the survival package (https://CRAN.R-

project.org/package=survival) in R (version 
4.3.1). 
 
Supplementary materials  

Table S1 provides interactions between 
significantly differentially expressed genes and 
oxaliplatin in gastric cancer retrieved from 
CTD (define CTD). Available at 
https://github.com/aniiiiis/RPS-
Supplementary-Table-1. 
 

RESULTS 
 
Identification of tumor-DEGs 

Two GEO gene expression datasets 
(GSE26942 and GSE66229) were used. 
GSE26942 consisted of 12 normal samples and 
202 GC samples, while GSE66229 included 
100 normal samples and 300 GC samples. In 
the former group, there were a total of 2564 
genes that showed differential expression (423 
upregulated and 2,141 downregulated). The 
latter group exhibited 863 DEGs (277 
upregulated and 586 downregulated). On the 
other hand, according to the TCGA dataset, a 
total of 12950 genes were found to have 
different expression levels (4,682 
downregulated and 8,268 upregulated). The 
DEGs from both GEO datasets were compared 
to those from the TCGA datasets. A Venn 
analysis was performed to determine the 
overlap of DEG profiles (Fig. 2). The analysis 
revealed a total of 151 common DEGs (39 
upregulated and 112 downregulated) shared 
between all three datasets.

 

 
Fig. 2. Venn diagrams of DEGs in gastric cancer versus normal tissue. The Venn diagram displays the number of DEGs 
in each of the three groups, GSE26942, GSE66229, and TCGA. Venn diagram of overlapped (A) DR genes and (B) UR 
genes. DEGs, differentially expressed genes; DR, downregulated; UP, upregulated.  
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Identification of hub genes using PPI network 
analysis 

A network of PPIs was created for the 151 
genes that were overlapping differentially 
expressed genes. By selecting the combined 
scores > 0.4 and hiding the disconnected nodes, 
the network consists of 104 nodes and 198 
edges (Fig. 3A). For this study, we assessed the 
hub genes using the MCC score. The MCC 
algorithm is a method used to analyze the 
topology of a network and determine the 
importance of nodes. It has been recognized as 
the most effective method for identifying hub 
nodes when compared to other approaches. 
This method evaluates the significance of a 
node in a network solely based on its 
connections with its immediate neighbors (20). 
These are the top ten genes with the highest 
MCC score: ATP4A, SPP1, GHRL, SST, KIT, 
MMP3, CHGA, SERPINE1, PGC, and TFF2 
(Fig. 3B). 
 
Pathway enrichment analysis  

All 151 common DEGs were subjected to 
pathway enrichment analysis. The up- and 

down-regulated DEGs were analyzed 
separately with the Cytoscape plug-in 
ClueGo/CluePedia to identify pathway 
enrichment and gain a better understanding of 
their function. The enrichment analysis of                   
39 upregulated genes using KEGG, Reactome, 
and WikiPathways revealed significant changes 
in pathways related to “degradation of 
extracellular matrix”, “extracellular matrix 
organization”, “collagen formation”, “assembly 
of collagen fibrils”, and “collagen 
degradation”. From these pathways, we 
identified 8 key genes (MMP3, MMP10, 
COL10A1, COL11A1, LAMC2, SPP1, 
SERPINE1, and CEACAM6) as important 
regulators (Fig. 4A). The same analysis for                 
112 downregulated genes revealed that                   
these genes were enriched in two functional 
clusters, including “gastric acid secretion”                 
and “peptide hormone metabolism” (Fig. 4B). 
From these, 13 genes (KCNE2, KCNJ15, 
KCNJ16, ATP4A, ATP4B, SST, CHRM3, 
CCKBR, CHRL, ISL1, MYRIP, CPE, and 
ERO1B) were identified as important 
regulators.

 
 

 
Fig. 3. Protein-protein interaction network of DEGs in gastric cancer. The nodes represent genes (with a combined score 
of > 0.9), and the edges indicate interactions between their protein products. (A) Colorful nodes represent the degree 
(number of interacting partners) of a gene; darker colors indicate genes with more interactions, potentially playing a more 
central role in the network. (B) Top 10 hub genes identified by the MCC Method. Hub genes are genes with a high number 
of interactions with other genes in a protein-protein interaction network. DEGs, differentially expressed genes 
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Fig. 4. Pathway enrichment analysis in gastric cancer. KEGG, Reactome, and Wiki Pathways analysis of (A) upregulated 
and (B) downregulated genes. The color of nodes indicates the P-value, and the enrichment shows only significant pathways 
(P-value < 0.05). Darker and lighter color nodes indicate a P-value < 0.001 and P-value < 0.001-0.05, respectively. 

 
Survival analysis 

Using the "survival" R package, a univariate 
survival analysis was conducted to screen 
tumor-associated DEGs that are associated with 
overall survival. A total of 13 genes were 
identified as significant based on the criteria of 
log‐rank P < 0.05, and HR ≠ 1 was identified. 
In GC patients, the poorer overall survival was 
found to be correlated with the increased 
expression of 5 genes, as well as the decreased 
expression of 20 genes shown in Table 1. These 
25 genes were considered significant and used 
in further analysis. 
 
Oxaliplatin-interacting genes  

Using the CTD Chemical-Gene Query, 
reactions involving oxaliplatin and genes 
related to predicted pathways were analyzed. In 
addition, the impact of oxaliplatin on mRNA 
expression concerning specific genes was 
compared, and interactions between oxaliplatin 
and important genes linked to overall survival 
were identified. A total of 3861 genes were 
found to interact with oxaliplatin, according to 
the source CTD. Out of many genes, 97 were 
expressed in GC patients. This in silico research 
enabled us to acquire binary linkages of genes 
that are significant concerning oxaliplatin. It 

has been observed that oxaliplatin enhances the 
expression of 56 genes while suppressing 29 
genes, which could contribute to the 
development of GC. Likewise, oxaliplatin 
significantly increased/ decreased the 
expression of 7 genes (Table S1). Also, mRNA 
expression of these genes was evaluated in GC. 
We observed that the expression of 33 genes 
was altered in GC patients (Table S1). 

Furthermore, pathway enrichment analysis 
for the set of 97 genes was conducted                   
using ClueGo/CluePedia, as previously 
described. Obtained results showed these              
genes were implicated in pathways such as 
“MAPK3 (ERK1) activation, “interleukin-6 
signaling”, “transcriptional activation of p53 
responsive genes”, “dissolution of fibrin clot", 
and “nuclear events stimulated by ALK 
signaling in cancer” (Fig. 5). Figure 5 reports 
the importance of 45 genes for pathway 
regulation. The expression of these 45 genes                 
in GC patients was compared with the                   
type of interaction described between 
oxaliplatin and the selected genes. Out of the 
total, only 14 of them exhibited alterations in 
expression while interacting with oxaliplatin in 
the stomach cancer datasets analyzed in this 
work (Table 2).   
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Table 1. Survival-related genes in gastric cancer patients. 

Gene Up/down-regulated |Log2FC*| Log‐rank p Hazard ratio  95% Confidence interval  

PDGFD Down 1.27 0.00008 2.03 1.43, 2.88 

SERPINE1 Up 2.21 0.0005 1.8 1.31, 2.63 

PLCXD3 Down 1.98 0.0006 1.83 1.30, 2.59 

PDK4 Down 2.74 0.0009 1.80 1.27, 2.55 

RECK Down 1.28 0.0009 1.80 1.27, 2.55 

GHR Down 2.17 0.002 1.72 1.22, 2.43 

SLC16A7 Down 1.5 0.002 1.75 1.23, 2.48 

COL4A5 Down 1.99 0.003 1.69 1.19, 2.40 

PCDH7 Down 0.77 0.008 1.59 1.13, 2.25 

ANGPT1 Down 1.5 0.012 1.55 1.10, 2.20 

LRRC17 Down 0.69 0.012 1.55 1.10, 2.19 

CTHRC1 Up 3.46 0.01356 1.54 1.09, 2.17 

TEAD4 Up 1.49 0.014 0.65 0.46, 0.92 

AFF3 Down 1.74 0.015 1.53 1.09, 2.17 

PTGER3 Down 1.51 0.016 1.53 1.08, 2.15 

CD36 Down 2.23 0.020 1.50 1.06, 2.11 

ADAMTS1 Down 2.07 0.022 1.49 1.06, 2.11 

JAM2 Down 1.96 0.022 1.49 1.06, 2.11 

CLIC6 Down 1.46 0.022 1.50 1.06, 2.12 

DMD Down 1.96 0.029 1.47 1.04, 2.07 

COL10A1 Up 6.87 0.032 1.46 1.03, 2.05 

GPX3 Down 2.47 0.038 1.44 1.02, 2.03 

ADH1B Down 2.48 0.040 1.43 1.02, 2.02 

CPE Down 1.29 0.040 1.43 1.02, 2.02 

SPP1 Up 3.95 0.045 1.42 1.01, 2.00 

*Based on the Cancer Genome Atlas data results. 

 
 

Table 2. Comparison between the gastric cancer mRNA expression of genes associated with identified pathways, with 
the Comparative Toxicogenomics Database detected binary interactions between OXA and the same group of genes. 

Gene name OXA-mRNA interaction mRNA expression in gastric cancer  

BIRC5* Low High 

BLVRB** Low Low 

CAV1* High Low 

CDH2* High Low 

CDKN1A High/Low Low 

CDKN2A** High High 

IL6* High Low 

JUN* High Low 

MAPK3** Low Low 

PLAU** High High 

PTGS2** High High 

SERPINB2* High Low 

SERPINE1** High High 

TYMS* Low High 
OXA, Oxaliplatin; *, OXA regulates the expression of significant genes in the opposite way to gastric cancer tissue expression; **, OXA promotes 
the expression of genes in the same way as it was seen in gastric cancer tissue. 
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Fig. 5. Pathway analysis of oxaliplatin-interacting gastric cancer dysregulated genes. This figure displays the outcomes 
of a pathway enrichment analysis for genes that interact with oxaliplatin and are dysregulated in gastric cancer compared 
to normal tissue as a result of their interaction with oxaliplatin. The list of pathways was extracted from the KEGG, 
Reactome, and WikiPathways databases. 

 
Common gene between tumor-DEGs and 
oxaliplatin-interacting dysregulated genes in GC 

To identify the set of common genes affected 
by oxaliplatin and consistently dysregulated in 
GC patients, we conducted a series of analyses, 
including differential expression, pathway 
enrichment, PPI network, and survival analysis. 
Figure 6A illustrates the intersection of tumor-
DEGs and oxaliplatin-interacting dysregulated 
genes using a Venn diagram. It suggests that 

SERPINE1 may play a role in driving negative 
outcomes in GC patients who receive 
oxaliplatin treatment. According to the data in 
Table 2, it has been observed that oxaliplatin 
can enhance the expression of SERPINE1. This 
gene is considered to be significant and is found 
among the up-regulated genes in GC. Likewise, 
it showed a strong and significant relationship 
to overall survival in patients with GC                   
(Fig. 6B).  
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Fig. 6. Venn diagram and Kaplan-Meier curve. The Venn diagram of the distribution of significant genes listed in six 
analyses. (A) Venn diagram highlighting the overlapping of SERPINE1 in six different analyses. (B) Based on a log-rank 
P < 0.05 and HR#1, SERPINE1 is linked with overall survival. Patients with higher expression of SERPINE1 had 
significantly poorer survival rates. The threshold for dividing stomach adenoma and adenocarcinoma patients into two 
groups was established based on the median expression value of each gene. The red and blue lines represent high and low 
expression of SERPINE1, respectively. A total of 343 tumor samples from patients with stomach adenoma and 
adenocarcinoma in the Cancer Genome Atlas cohort were examined. 
 

DISCUSSION 
 

The risk-benefit profile of oxaliplatin 
remains poorly understood. Due to its 
anticancer properties, oxaliplatin is considered 
a leading treatment option for GC. it is a 
member of the third generation of platinum 
compounds employed in chemotherapy and is 
progressively emerging as the principal 
medication for the treatment of advanced GC 
(21,22). Despite ongoing advancements in 
chemotherapeutic regimens for GC, certain 
patients still experience adverse effects after 

undergoing chemotherapy. Additionally, there 
are currently no clinically accessible 
biomarkers that can predict the adverse effects 
of oxaliplatin. Therefore, we conducted the 
current in silico study to predict the potential 
molecular mechanisms instigated by oxaliplatin 
that could lead to unfavorable consequences in 
GC patients. 

We started by using the TCGA and GEO 
datasets to identify genes that exhibit consistent 
imbalances in GC tissue when compared to 
normal tissue. GC tissues showed 
overexpression of 39 genes and downregulation 
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of 112 genes, totaling 151 genes. We found a 
correlation between a lower overall survival 
rate in patients with GC and the increased 
expression of SERPINE1, TEAD4, SPP1, 
CTHRC1, and COL10A1 (n = 5), and the 
decreased expression of PDGFD, PLCXD3, 
PDK4, RECK, GHR, SLC16A7, COL4A5, 
PCDH7, ANGPT1, LRRC17, AFF3, PTGER3, 
CD36, ADAMTS1, JAM2, CLIC6, DMD, 
GPX3, ADH1B and CPE (n = 20). Zhu et al. 
suggested that CTHRC1 and SERPINE1 might 
be new molecular markers for GC that could 
help predict how well it will do, acting as 
oncogenes to help GC grow (23). The 
upregulation of TEAD4 was significantly 
correlated with adverse prognostic factors, such 
as increased tumor size, higher tumor grades, 
and lower survival rates in GC (24). 
Additionally, reports have highlighted the 
prognostic role of SPP1 in GC patients (25). 
Also, the overexpression of COL10A1 was 
indicative of a poor prognosis for GC, has 
potential in prognostic evaluation, and expands 
immunotherapy options for GC patients (26). 

Moreover, this research discovered the 
pathways that are regulated by tumor-DEGs. As 
anticipated, their primary involvement was in 
gastrointestinal and metabolic processes, 
including gastric acid secretion and peptide 
hormone metabolism. Additionally, they had a 
role in cancer progression through activities 
such as degradation of collagen, the 
extracellular matrix, and extracellular matrix 
architecture. The aforementioned findings were 
previously elucidated in the study conducted by 
Sadegh et al. (27). They identified DEGs in the 
GC, which were primarily enriched in 
biological processes such as extracellular 
matrix organization, collagen fibril 
organization, and extracellular structure 
organization for the upregulated genes. For the 
downregulated genes, the DEGs were mainly 
involved in the positive regulation of peptide 
hormone secretion (27). 

To identify the subset of genes that are often 
affected by oxaliplatin and consistently 
dysregulated in GC patients, 2632 genes that 
interact with oxaliplatin were obtained from the 
CTD. Among them, 97 genes showed 
expression in patients with GC. In silico 
analysis allowed us to get binary linkages of 

genes that are significant for oxaliplatin. Hence, 
the expression of each gene was compared with 
the specific type of interaction reported 
between oxaliplatin and these genes. It was 
shown that oxaliplatin enhances the expression 
of 55 genes and suppresses the expression of 29 
genes. Also, oxaliplatin significantly 
increased/decreased the expression of 7 genes 
from the set (Table S1).  

To further explore the potential mechanisms 
of oxaliplatin-induced toxicity, we identified a 
set of genes that interact with oxaliplatin. By 
integrating these genes with the DEGs 
identified from TCGA and GEO, several key 
pathways were recognized that may contribute 
to oxaliplatin-related adverse effects including 
“MAPK3 (ERK1) activation”, “interleukin-6 
signaling”, “transcriptional activation of p53 
responsive genes”, “dissolution of fibrin clot”, 
and “nuclear events stimulated by ALK 
signaling in cancer”. Among these, a total of 45 
genes were identified significant in the control 
of pathways, as shown in Fig. 5. Out of them, 
oxaliplatin mediated reversion of the 
expression of seven significant genes involved 
in GC, including BIRC5, CAV1, CDH2, IL6, 
JUN, SERPINB2, and TYMS, which have been 
indicated playing an important role as tumor 
suppressor (28-30). While oxaliplatin mediated 
the progression of GC six genes expression 
(BLVRB, CDKN2A, MAPK3, PLAU, PTGS2, 
and SERPINE1), which could explain its 
oncogenic effects. Chen et al. showed that 
SERPINE1 could promote the occurrence and 
development of GC, while deletion of 
SERPINE1 inhibited the progression of GC 
(31). This analysis aided in identifying 
biological pathways that have the potential to 
cause negative outcomes in GC patients who 
have undergone treatment with oxaliplatin. The 
identification of SERPINE1 as a hub gene in the 
PPI network further highlights its central role 
and biological significance, reinforcing its 
potential importance in the molecular 
mechanisms underlying GC. 

Due to genetic differences in individuals, 
some patients have a poor response to 
chemotherapy. Therefore, it is necessary to 
identify a biomarker for tracking the response 
to chemotherapy. For this reason, we searched 
for a biomarker in our study. We conducted a 
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series of analyses, including differential 
expression, pathway enrichment, the PPI 
network, survival analysis, and the relationship 
between tumor-DEGs and oxaliplatin-
interacting dysregulated genes. It suggests that 
SERPINE1 may play a role in driving negative 
outcomes in GC patients receiving oxaliplatin 
treatment (Fig. 6). Oxaliplatin can enhance the 
expression of SERPINE1. The upregulation of 
this gene is considered significant in GC. 
Likewise, it showed a strong and significant 
relationship to overall survival. Several studies 
have demonstrated a correlation between an 
overexpression of SERPINE1 and a poor 
prognosis in GC (19,20). 

There are distinct advantages to utilizing 
bioinformatics analysis in the field of 
toxicology. Large-scale multi-omics datasets, 
such as those presented in the TCGA, have 
greatly enhanced our understanding of the 
characteristics of a wide range of tumors. These 
cancer datasets provide valuable insights into 
the characteristics of human cancers at various 
levels, enabling the development of more 
precise and effective treatments (32). In 
addition, these data may help accelerate the 
development of personalized cancer therapy 
strategies and predict possible adverse effects 
for each patient. In toxicological research, some 
data repositories allow for the initial analysis 
and identification of chemical gene interactions 
and disease relationships (33). One of these 
databases is the CTD (34). By employing a 
range of methods, researchers can conduct 
initial toxicology studies that provide insights 
into the potential adverse effects of the 
chemical under investigation. These findings 
then inform subsequent in vitro and in vivo 
analyses. 

While our in silico analysis provides 
valuable insights, it is important to 
acknowledge its limitations. Through the 
utilization of data mining and DEG analysis, we 
conducted a comprehensive investigation into 
the pharmacokinetic-toxicological profile of 
oxaliplatin. Further experimental validation is 
needed to confirm these findings. Despite these 
limitations, our study highlights the potential of 
in silico approaches to identify novel 
biomarkers and therapeutic targets for GC. 
 

CONCLUSION 
 

Oxaliplatin, a chemotherapeutic drug 
containing platinum, is widely acknowledged 
as the main medication for treating advanced 
gastric cancer. However, the safety profile of 
using oxaliplatin to treat gastric cancer patients 
has not yet been clearly established. This study 
used the GEO datasets and the TCGA cohort to 
find differentially expressed genes in gastric 
cancer. Then we checked the interaction of 
these genes with Oxaliplatin, the results 
revealed that Oxaliplatin (OXA) mediated 
reversion of GC expression of seven significant 
genes (BIRC5, CAV1, CDH2, IL6, JUN, 
SERPINB2, and TYMS) while, oxaliplatin 
mediated progression of GC expression of six 
genes (BLVRB, CDKN2A, MAPK3, PLAU, 
PTGS2, and SERPINE1) which could 
potentially contribute to the advancement of 
GC. Therefore, the genomic signature of 
patients with gastric cancer (GC) could be a 
crucial aspect to consider when evaluating the 
risk-to-benefit ratio of oxaliplatin therapy. In 
addition, SERPINE1 showed a strong 
correlation with overall survival. Further 
investigation is required in both preclinical and 
clinical settings to validate these findings. 
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